REPORT NO. CASD-NAS-74-029 CONTRACT NAS 8-30665

(NASA-CR-120365) ROOM TEMPERATURE STRETCH FORMING OF SCALE SPACE SHUTTLE EXTERNAL	N74-31343
TANK DOME GORES. VOLUME 1: TECHNICAL	Unclas
47 p HC \$5.50 CSCL 22B G3/3	11 46210

45

ROOM TEMPERATURE STRETCH FORMING OF SCALE SPACE SHUTTLE EXTERNAL TANK DOME GORES

VOLUME I + TECHNICAL FINAL REPORT

REPORT NO. CASD-NAS-74-029

ROOM TEMPERATURE STRETCH FORMING OF SCALE SPACE SHUTTLE EXTERNAL TANK DOME GORES

VOLUME I + TECHNICAL

FINAL REPORT

June 1974

Submitted to National Aeronautics and Space Administration GEORGE C. MARSHALL SPACE FLIGHT CENTER Science and Engineering Laboratory Huntsville, Alabama 35812

Prepared by GENERAL DYNAMICS CONVAIR DIVISION P.O. Box. 80847 San Diego, California 92138

FOREWORD

This report was prepared by General Dynamics Convair Division under Contract NAS8-30665 (Exhibit B) "Room Temperature Stretch Forming of Scale Space Shuttle External Tank Dome Gores" for the George C. Marshall Space Flight Center of the National Aeronautics and Space Administration. The work was administered by M. A. Oliver (A & PS-PR-RD) and monitored by Messrs. E. D. Minter (S & E-PE-MWP) and V. H. Yost (S & E-PE-MWP). C. L. Bennett was the program manager.

Volume I (technical) of the report was prepared by R. D. Blunck and D. E. Krantz, and the report was approved by C. L. Bennett. The production flow chart and tooling requirements were contributed by R. E. Bruce.

Volume II of the report contains the cost study estimates required under this contract. The cost estimates were prepared by L. J. Pierce, J. A. Cherry and E. N. Yeaton, and the report was prepared by D. E. Krantz.

PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

Section			Page
1	INTRO	DUCTION	1-1
2	PHASE	I - ROOM TEMPERATURE STRETCH FORMING OF	۱ ۰.
· · · · · ·	ONE-T	HIRD-SCALE EXTERNAL TANK BULKHEAD GORE	2-1
!	2.1	ROOM TEMPERATURE STRETCH FORMING	2-1
	2.2	LONGITUDINAL STRETCH FORMING MACHINE	
		CAPABILITY AT CONVAIR	2-3
	2.3	NUMERICAL CONTROL (N/C) MACHINING OF	
	•	GORE BLANKS	2-4
	$2_{\bullet}4$	WELD STRENGTH VERIFICATION TESTS AND	:
		GORE BLANK WELDING	2-4
	2.5	PRE-FORMING THICKNESS INSPECTION	2-6
	2.6	TRIMMING OF GORE BLANKS	2-9
	2.7	ELONGATION GRIDDING OF GORE BLANKS	2-9
	2,8	ONE-THIRD-SCALE GORE DIE AND	·
· ·		SUBSTRUCTURE	2-9
- '	2.9	STRETCH FORMING OF ONE-THIRD-SCALE	*.
		GORES	2-9
•	2.9.1	Test Setup	2 - 13
	2,9,2	Test	2 - 13
· · · ·	2.9.3	Post-Forming Inspection	2-15
	2.10	PACKAGING AND SHIPPING	2-29
	2.11	CONCLUSIONS	2-29
3	PHASE	II - PRODUCTION DIE DESIGN, TOOLING COST	
, .	STUDY	, AND PRODUCTION COST STUDY	3-1
,	3.1	GENERAL INFORMATION	3-1
	3,2	STRETCH FORM DIE DESIGN	3-3
	3.3	TOOLING COST STUDY	3-5
· .	3.4	PRODUCTION FLOW CHART	3-5
4	3.5	PRODUCTION COST STUDY	3-5
Appendix			
·	COLDS	STRETCH FORMED BULKHEAD GORE DRAWING	A-1

PRECEDING PAGE BLANK NOT FILMED

v

LIST OF FIGURES

Figure		Page
2-1	Single-Curvature Bending	2-1
2-2	Compound-Curvature Forming	2-2
2~3	STFM Blank for 12-Gore LO ₂ Bulkhead	2-5
2-4	Gore Blank Sheet C on Skin Mill - USAF Plant 19	2-6
2-5	Thickness Inspection Locations	2-7
2-6	Untrimmed Gore Blank	2-11
2-7	Elongation Inspection Locations	2-12
2-8	Die Substructure	2-13
2-9	Placing Gore Blank on Die	2 - 14
2-10	Gore Blank at Start of Stretch Forming	2 - 14
2 - 11	Blank C Stretch Press Setup	2 - 16
2-12	Blank A and B Stretch Press Setup	2 - 17
2-13	Gore Blank C After Forming	2-18
2-14	Gore Blank B Showing Weld	2 - 18
2-15	Gore A on Die	2-21
2-16	Gore A Showing Springback	2 - 21
2 - 17	Gore Blank B Elliptical Inspection Circles	2-22
2-18	Longitudinal Elongation Distribution, Sheet A	2-25
2-19	Longitudinal Elongation Distribution, Sheet B	2-25
2-20	Longitudinal Elongation Distribution, Sheet C	2-25
2-21	Centerline and Weld-Land Longitudinal Elongation	2-28
3-1	Siamese Stretch Form Preliminary Design for Elliptical	
	Bulkhead Gore	3-4
3-2	Production Flow Chart	3-7
3-3	Simplified Production Flow Chart	3-9
3-4	Production Rate and Lot Plan	3-10
	LIST OF TABLES	
2-1	Pre-forming Thickness Inspection, Sheets A, B, and C	2-8
2-2	Weld-Land Width Data	2-10
2-3	Post-forming Thickness Inspection, Sheets A, B, and C	2-19
2-4	Thickness Difference, Sheets A, B, and C	2-20
2-5	Circular Grid Measurements, Longitudinal Sheets,	
	A, B, and C	2-23
2-6	Percent Longitudinal Elongation, Sheets A, B, and C	2-24
2-7	Transverse Elongation, Sheets A, B, and C	2-26

2-8 Percent Transverse Elongation and Compression, Sheets A, B, and C 2-27

SUMMARY

This document is the final technical report on 'Room Temperature Stretch Forming of Scale Space Shuttle External Tank Dome Gores'' under Contract NAS 8-30665 (Exhibit B). It gives an account of the performed tests, the results, and an analysis of the results. It also gives an account of a production cost study. The technical material is presented in Volume I of the report, and the cost study data is presented in Volume II.

The Phase I objective of the program was to prove the feasibility of room temperature stretch forming of approximate one-third scale bulkhead gores from premachined 2219-T37 aluminum alloy blanks. Three gores were successfully formed to an approximate one-third-scale, 12-gore, 355.6-cm (140-in.) diameter polar cap configuration of a typical 838.7-cm (330.2-in.) diameter bulkhead, thereby demonstrating feasibility. The three gores were shipped to NASA MSFC and received by NASA, MSFC on June 21, 1974.

The Phase II cost study objectives were to: a) prepare a typical full-scale production STFM die design, and determine the cost of all tooling required to manufacture seven gore configurations at the required production rates, and, b) determine the production cost per gore for the seven configurations at the required production rates to manufacture, package, and ship these gores to NASA's Michoud Assembly Facility. All of the Phase II objectives were achieved.

SECTION 1

INTRODUCTION

This report is an account of activities and data gathered in the Room Temperature Stretch Forming of One-third Scale External Tank Bulkhead Gores for Space Shuttle study, and a tooling design and production cost study.

The objectives of the studies were to:

- a. Stretch form (at room temperature) three approximately one-third-scale external tank (ET) dome gores from single sheets of 2219-T37 aluminum alloy, for Marshall Space Flight Center testing and evaluation.
- b. Design a full-scale production die, and determine the cost of all tooling required to manufacture, using the room-temperature stretch forming (RTSF) process, ET dome gores at the required production rates.
- c. Determine the cost per gore, at the required production rates, to manufacture, package, and ship these gores to NASA's Michoud Assembly Facility.

The program was divided into phases and tasks:

Phase I - Manufacture, Documentation, and Delivery of Three One-third-Scale Room Temperature Stretch Formed External Tank Dome Gores

Of particular concern in this study is the amount of material that must be trimmed away after room temperature stretch forming. Reusable ends were welded on two gores before forming, demonstrating material reduction possibilities. The 12 gore 355.6 cm (140 in.) polar cap configuration was scaled down approximately one-third and used for the stretch forming test.

Phase II - Production Die Design, Tooling Cost Study, and Production Cost Study

Task A - Production Die Design

Task B - Tooling Cost Study

Task C - Production Cost Study

SECTION 2

PHASE I - ROOM TEMPERATURE STRETCH FORMING OF ONE-THIRD-SCALE EXTERNAL TANK BULKHEAD GORE

2.1 ROOM TEMPERATURE STRETCH FORMING

The bulkhead gore for the Space Shuttle External Tank is described by an ellipse rotated about its minor axis.

The longitudinal stretch forming process consists of two stages. The first is a wrapping or single-curvature bending of the blank over the die, where the blank is in contact with the crown of the die over the entire length. To impart this curvature permanently to the blank, the steps shown in Figure 2-1 must occur.

For thin materials, such as those being considered for the bulkhead gores, the strain required to accomplish this action is small in comparison with the strain required during the second stage of forming.

The second stage consists of stretching the material in contact with the die crown area and allowing the side material to drop down with respect to the crown. Elongation required to accomplish this forming is dependent on the die radius in the stretch form direction and the height differential between the crown and the edge of the part as shown in Figure 2-2.

The last point along the edge to touch the die has the least elongation. If the stretch forming process were stopped just as this point touched, the elongation at this point would be zero. With the unloading of the blank, this point would spring away from the die. To avoid this springback, the part must be further stretched to reach the material yield strain in the edge element.

To reduce fabrication costs and decrease stretch-pull tonnage requirements, the blanks are premachined. Basic blank thickness is determined by the maximum required weld land thickness. The blank is then machined, in the flat, to produce the gore skin-weld shape and thickness.

Further machining is required to produce a relatively constant cross-sectional area throughout the stretch form length, and a pocket is machined at the base end having the same crosssectional area.

The purpose of this pocketed area at the base of the gore is to allow the material to stretch in this area, thereby in effect, allowing a small amount of material draw to occur in the center of the gore base end. If this pocket is not machined in the blank, no material draw will occur during stretch forming, and the amount of stretch in the center at the base end will be slightly higher. Previous gore stretch forming tests with and without the machined pocket have proven this to be true.

2.2 LONGITUDINAL STRETCH FORMING MACHINE CAPABILITY AT CONVAIR

The stretch forming press used to stretch form the three one-third-scale test gores was a 500-ton Sheridan-Gray stretch press that is located at Building 5, Column C-16 at the Kearny Mesa Plant, San Diego. It's versatility is shown in the following data:

Maximum Tensile Force	500 ton
Jaw Width	254 cm (100 inches) in seven segments
Jaw Travel	91,44 cm (36 inches) each jaw
Distance Between Jaws	243.84 cm (96 inches) minimum 1259.84 cm (496 inches) maximum
(The six outboard segments can be p	positioned to curve the $jaws_{\bullet}$)
Strain Rates	5.08 to 101.60 cm (2 to 40 inches) per minute
Number of Die Tables	3 (usually used together)
Die Table Size	60.96 cm (20 inches) by 254 cm (100 inches) each
Longitudinal Die Table Capacity	182 cm (72 inches) minimum 1097.28 cm (432 inches) maximum
Die Table Vertical Travel	91, 44 cm (36 inches)

2.3 NUMERICAL CONTROL (N/C) MACHINING OF GORE BLANKS

The gore blanks were machined from 2219 aluminum alloy on hand at Convair. Two of the sheets were mill processed 2219-T37 0.635 cm (0.250 in.) thick by 152.4 cm (60 in.) wide by 304.8 cm (120 in.) long. The third sheet was 2219-T87 0.635 cm (0.25 in.) by 121.92 cm (48 in.) by 365.76 cm (144 in.). The third sheet was re-solution treated, quenched, and stretched 7% before machining. Although this sheet meets MIL-A-8920 minimum properties, it is not typical of mill supplied 2219-T37 material. Limited tensile data available indicates mill supplied 2219-T37 has 3 to 5% more available elongation than the material in the third sheet.

The blanks were milled to a scale factor of 838.7 cm (330.2 in.) full-size dome diameter divided by 304.8 cm (120 in.) Atlas dome diameter or SF=2.75. Thus the blanks are 36.3% of the full-scale gore. All dimensions were held to this scale except the thickness dimensions. It was decided that the minimum thickness of the scaled gores should be 0.070 inch to avoid the possibility of failure due to reduced elongation in thin sheets; therefore, the scale factor used for the material thickness is the minimum full-size LO₂ tank skin thickness of 0.297 cm (0.117 in.) divided by 0.178 cm (0.070 in.) or SF=1.67. The tapered weld land thicknesses were also scaled down using the 1.67 SF. Thus, all blank thickness dimensions are 59.8% of full size.

A flat layout drawing of the one-third-scale LO_2 tank gore was given to the Numerical Control (N/C) Department for preparation of the N/C program. Figure 2-3 shows the gore blank layout giving both flat dimensions and thicknesses. The blanks were held in place with a vacuum chuck plate on a Giddings and Lewis skin mill at USAF Plant 19. Multiple passes were made to ensure quality of finish. During the milling of the first blank (Sheet C), N/C programming error was encountered and the tape had to be revised. Some hand blending was done on Sheet C because of this error but was not necessary on Sheets A and B after tape revision. Figure 2-4 shows Sheet C being milled at USAF Plant 19, San Diego.

2.4 WELD STRENGTH VERIFICATION TESTS AND GORE BLANK WELDING

Four tensile bars were fabricated and tested of transverse hand welded 2219-T37 aluminum 0.635 cm (0.25 in.) thick taken from excess material of Blanks A and B. The purpose of these tests was to verify that the yield-ultimate weld strength was much greater than the stress applied to the gore welds during stretch forming. It was calculated that the stress on the weld during gore stretch forming will be approximately 1195.27 kg/cm² (17,000 psi), while the results of these tensile tests showed an average ultimate strength of 2812.4 kg/cm² (40,000 psi) in the weld area, and an average yield strength of 1617.13 kg/cm² (23,000 psi); therefore, weld failure should not occur.

Figure 2-3. STFM Blank for 12-Gore LO_2 Bulkhead

Figure 2-4. Gore Blank Sheet C on Skin Mill - USAF Plant 19

A 60.96-cm (24-in.) wide strip of cutoff material from Blanks A and B was welded onto gore Blanks A and B using the same edge preparation and hand welding technique that were used for the tensile specimens. The grain direction of the welded-on strips was perpendicular to the gore blank grain direction. Figure 2-3 shows the location of the weld on the gore blanks.

2.5 PRE-FORMING THICKNESS INSPECTION

Following the milling operation a grid system was marked on each gore blank. This system, shown in Figure 2-5, was made up of inspection locations in a 10.16 by 10.16 cm (4 by 4 in.) grid. Additional inspection locations were marked as required for added accuracy, and each location was identified by a station and line number. The thickness of material at each inspection location was determined with a Panametrics Model 5221 ultrasonic gauge, using both the delay line transducer and broad band contact transducer, and random readings were verified by a sheet metal micrometer. Table 2-1 shows the results of this pre-forming thickness inspection for all three blanks.

Table 2-1. Pre-forming Thickness Inspection, Sheets A, B, and C

Cono													Stat	ion										
Blank	Line		A	В	с	ם	E	F	Fx	G	Gx	н	Hx	I	J	К	L	м	N	0	Р	୍ୟ	R	s
	1	mm (in,)	3, 52 (, 139)	3,44 (,135)	3,42 (.134)	3,44 (,135)	3,48 (,137)	3,45 (.136)	3.40 (.134)	3,50 (,138)	3,59 (,141)	3,73 (.147)	3.83 (.151)	3,89 (,153)	4,02 (.158)	4,27 (.168)	4,45 (.175)	4.69 (.184)	4.83 (.190)	5.00 (.197)	5,16 (,203)	5,31 (,209)	5.59 (.220)	5,69 (.224)
	2	mm	3.55	2.46	2.46	2,48	2,49	2,51	3.40	2,21	2,22	2.13	2.13	2,17	2,20	2.24	2,26	2,26	2.31	2.31	2,32	2,33	2.35	5,74
		(III.) mm	(. 140) 3. 51	(.097) 2.41	(. 097) 2.48	(. 097) 2.46	(. 098) 2, 51	2,50	(• 134) 3, 43	(• 007) 2, 27	2.21	(. 064) 2. 12	(. 004) 2. 15	(. 085) 2. 11	(. 088) 2. 17	2.26	(. 085) 2, 26	(, 089) 2, 30	(. 091) 2, 30	(, 091) 2, 35	(, 031) 2, 29	(. 052) 2, 29	2.32	(, 220) 5, 69
	3	(in,)	(. 138)	(.095)	(. 097)	(.097)	(.099)	(, 098)	(, 135)	(, 089) D. D.	(, 087)	(.083)	(, 084)	(. 083)	(. 085)	(. 089)	(. 089)	(, 090)	(. 090)	(. 092)	(.090)	(.090)	(.091)	(. 224)
	4	mm (in.)	3, 44 (, 135)	2.45 (.096)	2.48 (.097)	2,49 (.098)	2, 51 (, 099)	2,51 (,099)	3, 51 (, 138)	2,36 (,093)	2.22 (.087)	2.12 (.083)	2.15 (.084)	2.20 (.086)	2, 12 (, 083)	2, 15 (, 084)	2.17 (.085)	2.21 (.087)	2.20 (.086)	2.22 (.087)	2.24 (.088)	2.21 (.089)	2.30 (.090)	5. 72 (. 225)
Blank A	5	mm (in.)	3.41 (.134)	2.45 (.096)	2.48 (.097)	2,49 (.098)	2.51 (.099)	2,50 (,098)	3.48 (.137)	2,31 (.091)	2.21 (.087)	2,12 (.083)	2,11 (.083)	2.18 (.086)	2.21 (.087)	2,15 (.084)	2.13 (.084)	2.15 (.084)	2.16 (.085)	2,21 (,087)	5.08 (.200)	5,28 (.208)	5.46 (.215)	5.69 (.224)
	6	mm (in)	3, 43 (135)	2.43	2.45 (096)	2,46	2,45	2,49	3, 44	2.26 (.089)	2, 18 (, 086)	2, 10	2,04 (.080)	2, 13 (, 084)	2.15 (.084)	2,04 (.080)	2, 10 (, 082)	2,11 (.083)	2.16 (.085)	2.21				
	7	(III,) mm	(. 186) 3, 44	(. 033) 2. 41	(. 053) 2.44	2,44	2,45	2,46	3.34	2.25	2, 13	2.06	2.06	2.04	2.06	4. 19	4.37	4. 57	4. 76	4.94				
	•	(in.) mm	(. 136) 3. 49	(, 095) 2, 44	(, 096) 2.44	(.096) 2.45	(.096) 2.46	(.097) 2.44	(. 131) 3. 38	(.088) 2.24	(.084) 2.16	(. 081) 2. 06	(.081) 2.06	(.080) 2.03	(.081) 2.01	(. 165)	(. 172)	(. 180)	(. 187)	(. 194)				
	8	(in.)	(. 137)	(. 096)	(. 096)	(, 096)	(.097)	(096)	(, 133)	(. 088)	(. 085)	(. 081)	(, 081)	(. 080)	(.079)									
	9	mm (in.)	3, 51 (. 138)	3.45 (.136)	3,29 (.129)	3,31 (,130)	3, 31 (, 130)	3,31 (.130)	3,24 (,127)	3,35 (,132)	3,45 (.136)	3,58 (.141)	3, 62 (, 142)	3.68 (.145)	3.87 (.152)									
	1	mm (In)	3,50	3,40	3,30	3,35	3.39 (133)	3, 34	3,30	3,42	3,50	3,67	3,75	3, 77 (148)	4,00 (157)	4,28	4.43	4,70 (185)	4,83 (196)	4, 99	5, 16 (. 203)	5, 31 (209)	5, 59 (. 220)	5.69
	9	mm	8,57	(* 104 <i>)</i> 2, 44	(. 1 30) 2 . 46	2.46	2. 48	2,50	3.35	2.24	2,24	(, 111) 2, 11	2, 16	(, 110) 2, 12	2,20	2,22	2,24	2, 25	2,30	2.31	2.31	2.35	2.35	5. 75
		(in.) mm	(. 140) 3. 48	(.096) 2.41	(. 097) 2. 45	(.097) 2.44	(.097) 2.48	(.098) 2.48	(.132) 3.43	(. 088) 2.25	(. 088) 2. 20	(.083) 2.08	(, 085) 2, 12	(. 083) 2. 07	(. 086) 2, 18	(, 087) 2, 25	(.088) 2.26	(. 088) 2. 29	(.090) 2.30	(.091) 2.33	(.091) 2.29	(. 092) 2.31	(.092) 2.33	(. 226) 5. 75
	3	(in.)	(, 137)	(. 095)	(. 096)	(. 096)	(. 097)	(.097)	(, 135)	(. 088)	(. 086)	(, 082)	(.083)	(. 081)	(, 086)	(. 088)	(.089)	(. 090)	(. 090)	(. 092)	(.090)	(.091)	(. 092) 9. 90	(. 226)
	4	mm (in.)	3, 43 (, 135)	2,43 (.095)	2,44 (.096)	2,46 (.097)	2.49 (.098)	2,50 (,098)	3.47 (.136)	2.31 (.091)	2.22 (.087)	2.08 (.082)	2, 13 (. 084)	2,17 (.085)	2, 11 (. 083)	2.13 (.084)	2,16 (,085)	2,20 (,086)	2,21 (,087)	2.21 (.087)	2.22 (.087)	2.25 (.088)	(, 090)	5. 77 (. 227)
Blank B	5	ппл (in.)	3.40 (.134)	2.40 (.094)	2,45 (.096)	2,45 (.096)	2.46 (.097)	2,49 (.098)	3.45 (.136)	2.26 (.089)	2.21 (.087)	2.08 (.082)	2, 12 (. 083)	2.15 (.084)	2,22 (.087)	2,12 (.083)	2.13 (084)	2.16 (.085)	2, 17 (, 085)	2.20 (.086)	5.03 (.198)	5,26 (.207)	5.49 (.216)	5.64 (.222)
	6	mm (in)	8,85 (182)	2,37	2,43	2,44	2,45	2,44	3,43 (.135)	2,25	2, 18 (. 086)	2,06	2,07 (-081)	2,11 (.083)	2, 12 (. 083)	2,03 (.080)	2,06	2, 08 (. 082)	2,16 (.085)	2.16				
	7	mm	3.40	2,38	2.41	2.41	2.41	2.33	3.28	2.20	2.10	2.01	2.03	2.04	2.01	4.15	4,37	4.57	4.73	4.94				
		(in.) mm	(, 134) 3, 48	(.093) 2.40	(. 095) 2.38	(.095) 2,41	(.095) 2.41	(. 092) 2, 41	(. 129) 3, 28	(. 086) 2, 20	(. 082) 2, 13	(.079) 2,01	(. 080) 2, 02	(, 080) 1, 98	(.079) 1.99	(. 163)	(, 172)	(. 180)	(, 186)	(. 194)				
	8	(in.)	(, 137) 3 50	(.094)	(.093)	(.095)	(,095)	(, 095) 9 20	(, 129)	(, 086)	(. 084)	(.079) 9 50	(, 079) 9- <i>84</i>	(. 078) 9. 69	(.078)									
	9	(in.)	3, 52 (, 138)	(. 134)	3.25 (.128)	(, 130)	(, 131)	(, 130)	(, 131)	(, 133)	(, 137)	(, 141)	3, 64 (, 143)	(, 145)	(, 151)									·
	1	mm (in.)	3, 48 (, 137)	3.33 (.131)	3,30 (,130)	3.38 (.133)	3,43 (.135)	3.40 (.134)	3.35 (.132)	3.40 (.134)	3.50 (.138)	3.60 (.142)	3.71 (.146)	3, 78 (, 149)	4.01 (.158)	4, 19 (, 165)	4, 37 (, 172)	4,57 (.180)	4,75 (,187)	4.90 (.193)	5.08 (.200)	5.21 (.205)	5.54 (.218)	5 . 44 (. 214)
	2	mm (in)	3.48	2.21	2.18	2.21	2,24	2.24	3.35	2.08	2.11	2.01	2.03	2.01	2.06	2, 13	2, 18	2,18	2, 16	2.24	2,29	2,26	2.31	5,44
	3	mm	(. 107) 3.45	2, 18	(. 088) 2. 21	(. 007) 2, 24	2,21	2.24	3.38	(. 082) 2. 18	2, 13	2,06	(1 030) 2. 03	2.06	(. 081) 2. 08	(. 084) 2. 16	(. 030) 2. 18	(. 000) 2. 21	2.24	(. 083) 2, 26	(. 050) 2. 21	2, 24	2, 26	(* 211) 5. 46
	5	(in.) mm	(. 136) 3. 38	(. 086) 2. 21	(, 087) 2, 21	(.088) 2.24	(. 087) 2. 24	(. 088) 2 24	(. 133) 3. 45	(• 086) 2. 26	(.084) 2.13	(, 081) 2, 06	(. 080) 2. 03	(. 081) 2. 08	(, 082) 2, 06	(, 085) 2. 08	(. 086) 2. 08	(. 087) 2. 11	(. 088) 2. 16	(, 089) 2, 18	(, 087) 2, 18	(, 088) 2, 24	(. 089) 2. 26	(, 215) 5, 44
	4	(in.)	(. 133)	(, 087)	(.087)	(, 088)	(. 088)	(.088)	(. 136)	(. 189)	(.084)	(.051)	(. 080)	(, 082)	(.081)	(, 082)	(.082)	(. 083)	(, 085)	(. 086)	(. 086)	(. 088)	(, 089)	(. 214)
Blank C	5	mm (in.)	3.35 (.132)	2,18 (.086)	2,21 (.087)	2,21 (,087)	2.24 (.088)	2.24 (.088)	3,43 (,135)	2,26 (.089)	2,13 (.084)	2.03 (.080)	2.06 (.081)	2.06 (.081)	2,11 (.183)	2,06 (,081)	2.06 (.081)	2.08 (.082)	2, 13 (, 084)	2,16 (.085)	5.05 (.199)	5.23 (.206)	5.44 (.214)	5,46 (.215)
	6	mm (in,)	3 <mark>, 33</mark> (, 131)	2,16 (,085)	2,18 (.086)	2,18 (,086)	2, 18 (, 086)	2.24 (.088)	3.40 (.134)	2.21 (.187)	2,11 (.083)	2.01 (.079)	2.01 (.079)	2.03 (.080)	2,06 (.081)	1,98 (.078)	2.01 (.079)	2,06 (.081)	2.08 (.082)	2.11 (.083)				
	7	mm	3,38	2.16	2.16	2.16	2.16	2, 16	3.40	2.18	2.08	2.01	1, 98	2.01	2,01	4.11	4.32	4.52	4.70	4.88				
	Q	(mu) mma	(. 133) 3. 43	(. 085) 2. 16	(, 085) 2, 16	(. 085) 2, 16	(. 085) 2, 16	(. 085) 2. 16	(, 134) 3, 33	(, 086) 2, 16	(.082) 2,11	(. 079) 2.01	(. 078) 1, 96	(. 079) 1. 93	(. 079) 1. 91	(. 162)	(, 170)	(* 148)	(• 169)	(* 192)				
	Ð	(in.)	(. 135) 3. 45	(.085) 3 38	(,085) 3.30	(,085) 3 20	(. 085) 3. 99	(. 085)	(, 131) 9 90	(.085) 3.05	(.083) 3.29	(.079) 3 59	(. 077) 3 ec	(. 076) 3 71	(.075) 3 01									
<u></u>	9	(in.)	(. 136)	(, 133)	(. 130)	(. 129)	3.28 (. 129)	5,28 (. 128)	3. 20 (. 126)	3, 25 (, 128)	(. 133)	3, 53 (, 139)	3.60 (.142)	(. 146)	(. 154)									·····

FOLDOUT FRAME

3

FOLDOUT FRAME

2-8

.

. +

.

.

.

`

2.6 TRIMMING OF GORE BLANKS

Average thicknesses for each station were calculated using the results of the preforming thickness inspection. Knowing average thicknesses, width of the pocket, and average weld-land width and thickness, a standard cross-sectional area was determined for each gore blank. The weld-land cross-sectional area for each station was varied to maintain constant cross-sectional area from Station B through R, with the exclusion of Station Fx. Table 2-2 shows average pocket and weld-land thicknesses and widths for each station of each gore blank. The same cross-sectional area is maintained over the length of the gore to provide uniform elongation during the forming process. During the milling of Blanks A and B one edge was trimmed too close to the milled pocket to permit the desired land width of 5.08 cm (2 in.) to be maintained. This error decreased the cross-sectional area for these two blanks, and thus reducing the width of the weld land.

2.7 ELONGATION GRIDDING OF GORE BLANKS

A 5.05 cm (1.99 in.) elongation inspection circle was scribed about each thickness inspection location. A circular grid system was chosen over a square grid system because it is nondirectional. A circle is always correctly oriented to furnish the maximum elongation directly. During forming, the circles are deformed into ellipses where strain is high, and the major axes of these ellipses indicate the direction of maximum strain. Elongation in the longitudi nal and transverse directions was determined by this deformation. Figure 2-6 shows the trim lines on the left and right of the photo, the thickness inspection locations, and elongation inspection circles. Figure 2-7 shows the location of each elongation circle and call-out of station and line numbers.

2.8 ONE-THIRD-SCALE GORE DIE AND SUBSTRUCTURE

An existing Atlas bulkhead gore die at General Dynamics Convair Division, San Diego, was used to produce the approximately one-third-scale gores required for test and evaluation. The stretch form die was placed atop a substructure shown in Figure 2-8. This structure was needed to obtain the vertical height necessary for the operation. The majority of the vertical height was obtained by using an existing die support and the remaining structure was constructed of six I-beams that were welded together for stability.

2.9 STRETCH FORMING OF ONE-THIRD-SCALE GORES

The die and substructure were centered and secured in place for forming, and the three gores were successfully stretch formed the morning of June 6, 1974. The sequence in which the gores were formed was: Gore C, Gore B, and Gore A.

Table 2-2. Weld-Land Width Data

			Station																					
_			A	B	C	D	E	F	Fx	G	Gx	н	Hx	I	J	ĸ	L	м	N	0	P	<u>Q</u>	R	s
	Average Pocket Thickness	mm (in.)	0 0	2, 44 (, 096)	2, 46 (. 097)	2,46 (.097)	2, 49 (. 098)	2,49 (.098)	0 0	2,26 (,089)	2, 18 (, 086)	2, 11 (. 083)	2, 11 (. 083)	2, 13 (, 084)	2, 13 (. 084)	2.16 (,085)	2, 18 (, 086)	2, 21 (, 087)	2.24 (.088)	2, 26 (, 089)	2, 29 (, 090)	2. 29 (. 090)	2,31 (.091)	0 0
Blank	Pocket Width	cm (iu.)	0 0	74, 24 (29, 23)	74, 24 (29, 23)	74, 24 (29, 23)	74, 27 (29, 24)	74, 30 (29, 25)	0 0	74.50 (29.33)	73, 00 (28, 74)	71, 27 (28, 06)	69,49 (27,36)	67,56 (26,60)	63, 88 (25, 15)	61, 00 (23, 70)	56, 52 (22, 25)	52, 93 (20, 80)	49, 15 (19, 35)	45, 39 (17, 87)	41, 66 (16, 40)	37, 97 (14, 95)	34.24 (13,48)	0 0
A	Average Weld- land Thickness	mm (in.)	3, 48 (, 137)	3, 45 (, 136)	3, 35 (, 132)	3, 38 (, 133)	3.40 (.134)	3, 38 (, 133)	3, 40 (, 134)	3, 43 (, 135)	3, 53 (, 139)	3, 66 (, 144)	3, 73 (, 147)	3. 78 (. 149)	3, 96 (, 156)	4. 24 (. 167)	4.42 (.174)	4.62 (.162)	4.80 (.189)	4.98 (.196)	5. 13 (. 202)	5.31 (.209)	5.54 (.218)	5. 72 (. 225)
	Weld-land Width	cm (in,)	2, 72 (1, 07)	2, 72 (1, 07)	2, 51 (, 99)	2, 44 (, 96)	2,21 (.87)	2, 16 (. 85)	3, 28 (1, 29)	4, 42 (1, 74)	5,61 (2,21)	6, 78 (2, 67)	7.16 (2,82)	7. 34 (2. 89)	7.98 (3.14)	8. 08 (3, 18)	8, 53 (3, 36)	8, 86 (3, 49)	9, 27 (3, 65)	9,60 (3,78)	10, 03 (3, 95)	10,41 (4,10)	10, 67 (4, 20)	10, 67 (4, 20)
Blank	Average Pocket Thickness	111m (in.)	0 0	2,41 (,095)	2.44 (.096)	2,44 (.096)	2,46 (.097)	2,46 (.097)	0 0	2, 24 (. 088)	2, 18 (, 086)	2,06 (.081}	2,08 (.082)	2, 08 (, 082)	2, 11 (. 083)	2, 16 (. 085)	2, 16 (. 095)	2, 18 (. 086)	2, 24 (. 058)	2, 24 (. 088)	2, 26 (. 089)	2,31 (.091)	2, 34 (. 092)	0 0
	Pocket Width	cm (in.)	0 0	74, 30 (29, 25)	74, 30 (29,25)	74, 32 (29, 26)	74, 35 (29, 27)	74, 37 (29, 28)	0 0	7 4. 52 (29. 34)	72, 95 (28, 72)	71, 22 (28, 04)	69.49 (27.36)	67, 62 (26, 62)	63, 86 (25, 14)	60.25 (23,72)	56, 54 (22, 26)	52, 83 (20, 80)	49, 17 (19, 36)	45, 42 (17, 88)	41, 71 (16, 42)	37, 95 (14, 94)	34, 29 (13, 50)	0 0
в	Average Weld- land Thickness	mm (in,)	3, 40 (, 134)	3,28 (,129)	3, 33 (, 131)	3,35 (,132)	3, 33 (, 131)	3.33 (.131)	3,38 (,133)	3,40 (,134)	3,51 (,138)	3,63 (,143)	3.71 (.146)	3.73 (.147)	3 . 94 (. 155)	4, 22 (, 166)	4.39 (.178)	4, 65 (, 183)	4, 78 (, 188)	4, 95 (. 195)	5, 11 (, 201)	5.28 (.208)	5, 54 (, 218)	5.72 (.225)
	Weld-land Width	cm (in_)	2.58 {1.02)	2.58 (1.02)	2.37 (.93)	2.25 (.69)	2.04 (.80)	2.09 (.82)	(1,25)	4.26 (1.68)	5,28 (2,08)	6.77 (2.67)	6, 82 (2, 69)	7.30 (2.87)	7, 68 (3, 03)	7.80 (3.07)	8, 24 (3, 24)	8, 52 (3, 36)	8,91 (3,51)	9,35 (3,68)	9, 78 (3, 85)	10, 12 (3, 98)	10,32 (4,06)	10,32 (4,06)
	Average Pocket Thickness	mm (in,)	0	2,18 (,086)	2. 18 (. 086)	2,21 (,087)	2,21	2, 21 (. 087)	0 0	2, 18 (, 086)	2, 11 (, 083)	2, 03 (. 080)	2.01 (.079)	2, 03 (, 080)	2, 03 (, 080)	2.08 (.082)	2, 11 (, 083)	2, 13 (, 084)	2,16 (.085)	2, 18 (. 086)	2, 24 (, 088)	2, 24 (. 088)	2,26 (,089)	0 0
Blank	Pocket Width	cm (in.)	0 0	74, 17 (29, 20)	74, 17 (29, 26)	74.17 (29.20)	74, 17 (2 9 , 20)	74, 17 {29, 20}	0 0	74,81 (29,06)	72, 72 (28, 63)	71, 12 (28, 00)	69, 54 (27, 38)	67, 46 (26, 56)	63, 83 (25, 13)	60, 17 (23, 69)	56, 36 (22, 19)	52, 71 (20, 75)	49,05 (19,31)	45, 42 (17, 88)	41, 61 (16, 38)	38, 10 (15, 00)	34, 29 (13, 50)	0 0
C.	Average Weld- land Thickness	mm (in.)	3, 40 (, 134)	3, 35 (, 132)	3,30 (,130)	3, 33 (, 131)	3,35 (.132)	3,33 (.131)	3, 38 (. 133)	3,33 (,131)	3,45 (,136)	3, 56 (. 140)	3.66 (.144)	3, 76 (. 148)	3,96 (.156)	4, 17 (, 164)	4,34 (.171)	4,55 (,179)	4. 72 (. 186)	4,90 (,193)	5, 05 (, 199)	5,23 (,206)	5.49 (.216)	5.44 (,214)
	Weld-land Width	cm (in,)	5,33 (2,10)	5,33 (2,10)	5.31 (2.09)	5.13 (2.02)	5.05 (1.9 9)	5.03 (1.98)	5.16 (2.03)	5.31 (2.09)	6, 30 (2, 48)	7.49 (2.95)	7.77 (3.06)	8,05 (3,17)	8.43 (3.32)	8.59 (3,38)	8,99 (3,54)	9.25 (3.64)	9.58 (3.77)	9.86 (3.88)	10, 19 (4, 01)	10.57 (4.16)	10,69 (4.21)	10,69 (4.21)

.

Figure 2-7. Elongation Inspection Locations

Figure 2-8. Die Substructure

2.9.1 <u>TEST SETUP</u>. The die was coated with a special drawing compound Oakite 21 to decrease friction between the gore blank and die during forming. With the stretch press tables in the down position, the first gore blank was placed in position on the die (see Figure 2-9). The jaws of the press were then moved into place for gripping of the gore blank ends. Premachined aluminum spacers were placed in the jaws on either side of the gore blank to ensure even gripping, and the blank ends were placed in the jaws and gripping pressure applied. The tables were slowly raised to a forming position of 86.36 cm (34 in.) above the down position and the jaws were positioned for forming. Figure 2-10 shows the beginning of stretch forming of Blank C and the press tables in the raised or forming position.

2.9.2 TEST. The 500-ton Sheridan Gray stretch forming machine was programmed in advance for a 5% overall gore and pocket elongation. This value was chosen as the optimum, based on previous experience in stretch forming similar gores.

Figure 2-9. Placing Gore Blank on Die

Figure 2-10. Gore Blank at Start of Stretch Forming

A total of 8.57 cm (3.37 in.) of stretch was desired in the gore and pocket length. Sixty percent, or 5.13 cm (2.02 in.) was programed for the narrow end of the gore, the left jaw, and 40% or 3.43 cm (1.35 in.) was programed for the base end, the right jaw. This shifting of the overall travel of the two jaws was done to help shift elongation out of a critical area that will be noted later. Figure 2-11 is the setup sheet for Blank C and Figure 2-12 gives the setup for gore Blanks B and A. Gore Blank C, being the first to be formed, and also not being typical of mill supplied 2219-T37 material, was stopped before reaching full programed elongation. This is shown in the setup sheet, Figure 2-11. The left jaw traveled its full programed length of 3.30 cm (1.3 in.) but the right jaw traveling only 3.30 cm (1.3 in.) was short of its full travel by 2.03 cm (0.8 in.).

The forming of Blank C was stopped at this time and the blank was removed from the die. Figure 2-13 shows a concave bow across the weld-land between the gore and pocket. Two factors contributed to this bow, the major factor being the discontinuing of the programed 5% elongation. This halting of the forming process prevented the gore from being drawn completely down on the die at the base end; thus, forming was incomplete. The second factor was the bending effect of the jaws on the base end of the gore blank. The outside jaw segments were tilted 13 degrees each to conform to the contour of the die. The jaw angles can be seen in Figure 2-10 and the effect to the gripping area of the gore blank can be seen in Figure 2-13 at the base end.

Blank B was the second to be formed followed by Blank A, each using the same loading procedures as previously described. To ensure the desired blank and die contact, the press tables were raised another 2.54 cm (1 in.) to 88.9 cm (35 in.), and Blanks B and A were formed at this new level. To further ensure a good forming, Blanks B and A were allowed to be formed the full programed 5%. Figure 2-14 shows the successfully formed gore and the transverse weld across the gore blank. The welds in gore Blanks A and B appeared to be unaffected by the stretch forming.

2.9.3 <u>POST-FORMING INSPECTION</u>. Following the forming of the three gore blanks a post-forming inspection was performed. The thickness of each inspection location was again recorded using the same inspection procedures as in the pre-inspection. This data is shown in Table 2-3, with the difference of thickness between the preinspection and post inspection listed in Table 2-4.

Gore A was trimmed and placed against the stretch form die face to check contour. This is shown in Figure 2-15. Gores B and C were left untrimmed but were also checked for contour. Gore A had a 1.27 cm (0.5 in.) gap at the base end, as seen in Figure 2-16, and a 0.079 cm (0.031 in.) gap at the nose. Gore B in the untrimmed condition also had a 1.27 cm (0.5 in.) gap at the base, but an 0.635 cm (0.125 in.)gap at the nose. Gore C, not stretched the full 5% elongation, had a 1.905 cm (0.75 in.) gap at the base end and a 1.27 cm (0.5 in.) gap at the nose.

GENERAL DYNAMICS Convair Aerospace Division

.

Date:	June	6.	1974
2010		~,	

500 TON SHERIDAN GRAY STRETCH FORMING MACHINE
$1/3$ Scale R &D LO ₂ $\frac{\text{SET-UP SHEET}}{330.2 \text{ in. dia}}$
Part No. ET Gore DC NC 1/3 scale STFM # Atlas Die
Die Weight 11,500 lb Die Location on Tables Centered
Sheet Length 143.5 in. Part Width 33.5 in. Thickness 0.08 in 0.22 in.
Material Type 2219-T37 Aluminum
Carriage Position Readout L. H. 000 R. H. 7.4
Die Table Position Readout 000
Tension Cylinder Readouts Stretch Rate approx. 1 in./min. each jaw
Left Cylinder Right Cylinder
Post 8.3 Load 7.0 Program 7.0 Program 23.3 Load 23.3 Post 24.6
Stretch Programmed 1.3 Stretch Programmed 1.3
Total Stretch Both Cylinders Combined 2.6 Programmed
Prestretch Put on R. H. Cylinder 0 Add to Post Readout 0
Jaw Angle Up L. H. 40° Jaw Angle Up R. H. 40°
Oscillation L. H. 0 Oscillation R. H. 0
Centroid L. H. 0 Centroid R. H. 0
Radius Settings L. H. Jaw Front to Back. Jaw Pressure 9,000 psig
<u> 0 13 0 13 0 0 </u>
Radius Settings R. H. Jaw Back to Front. Jaw Pressure 14,000 psig
<u>0 0 13 0 13 0 0</u>
Rotation L. H. 0 Rotation R. H. 0
Post (Stretch) Dial Settings L. H. 3% R. H. 3%
Load (Return) Dial Settings L. H. 25% R. H. 25%
Die Table Height Settings Up Reading 34 in.
" " Down Reading 34 in.
Program Setting 34 in.
" " Post Setting 34 in.
" " " Speed Dial Setting 25%
Die Table Use: Center Table yes #1 & #3 Tables yes

Figure 2-11. Blank C Stretch Press Setup

GENERAL DYNAMICS Convair Aerospace Division

June 6, 1974 Date:

500 TON	SHERIDA	N GRAY	Y STR	ETCH FOR	MING MA	CHINE	
1/3 Scale R&D	LO ₂	SET-	UP SH	EET			
Part No. ET Gore		DC N	$C \frac{330}{1/3}$	scale	STFM #	Atlas Die	
Die Weight 11,500 lb		Die L	ocatio	n on Table:	s <u>cer</u>	ntered	
Sheet Length 143.5 in.		Part V	Vidth	33.5 in.	Thickne	ss 0.08 in22	in.
Material Type 2219-T37	Aluminur	n.					
Carriage Position Readout		L. H.	<u> </u>	00	R. H	7.4	
Die Table Position Readout	000						
Tension Cylinder Readouts Stretch Rate	annroy	in 7m	in or	ich jaw		·····	
Left Cylinder	approx.		<u></u> <i>ee</i>	ich jaw	Right Ca	Jinder	
Post 8.3 Load 7.0	Program	. 7 (li i N	Program	29 A T	and 22 A Post S	04 E
Stretch Programmed	1_3 in.	(•)		Stretch P	<u>44.4</u> L	22.4 Fost 2	(<u>±. </u> Ω,
Total Stretch Both Cylinder	s Combine		22;	n	rogrammo	Brogrammed	
Prestretch Put on R. H. Cvli	inde r	- <u></u> 0	0101	Add to Po	st Readou		
Jaw Angle Up L. H. 40-1	/2°			law Angle	Ib R H	40-1/2°	
Oscillation L. H. 0	<u></u>	-		Oscillatio	n R. H.	0	
Centroid L. H. 0				Centroid	п.н.	0	
Radius Settings L. H. Jaw F	ront to Bac	- k.		law Press	ure	9,000 psig	
0 0	0		.0	J=	0	0	
Radius Settings R. H. Jaw Ba	ick to From	 it.	· ·	law Press	ure	14,000 psig	
00	0		0		0	0	0
Rotation L. H0		• -		Rotation R	к. н.	0	<u> </u>
Post (Stretch) Dial Settings	Ľ. Н.	3%		R.H		3%	
Load (Return) Dial Settings	L.H.	25%		– R.H		25%	
Die Table Height Settings	Up Rea	ding	35	in.			
19 98 58 98	Down Rea	ding	35	in.			
n n n n r Pi	ogram Set	ting	35	in.			• •
\$\$ at \$\$ \$4	Post Set	ting	35	in.	· .		
••••••••••••••••••••••••••••••••••••••	ed Dial Set	ting '	259	6			• .
Die Table Use: Center T	able	ye	s	#1	1 & #3 Ta	bles yes	

Figure 2-12. Blank A and B Stretch Press Setup

Figure 2-13. Gore Blank C After Forming

Figure 2-14. Gore Blank B Showing Weld

Table 2-3. Post-forming Thickness Inspection, Sheets A, B, and C

Gore						-							Stat	ion						<u> </u>	<u>.</u>			
Blank	Line	2	A	в	, c	D	E	F	Fx	G	Gx	н	Hx	I	J	к	L	М	N	o	Р	Q	R	s
	1	mm (in.)	3.50 (.138)	3,35 (.132)	3, 35 (, 132)	3, 38 (, 133)	3, 38 (, 183)	3.20 (.126)	3.35 (.132)	3, 54 (, 139)	3.57 (.140)	3. 72 (. 146)	3.81 (.150)	3, 86 (, 152)	4.01 (.158)	4.18 (.164)	4.36 (.171)	4.60 (.181)	4, 75 (, 187)	4, 90 (. 193)	5, 03 (, 198)	5.08 (.200)	5.36 (.211)	5, 56 (, 219)
	2	mm . (in,)	3,53 (.139)	2.40 (.094)	2.43 (.095)	2.45 (.096)	2, 44 (. 096)	2, 44 (, 096)	3, 39 (, 133)	2,13 (.084)	2, 17 (, 085)	2,07 (.081)	2, 08 (, 082)	2,12 (,083)	2,15 (.084)	2.17 (.085)	2.21 (.087)	2.16 (.085)	2,26 (,089)	2,26 (.089)	2,26 (.089)	2, 26 (, 089)	2,26 (,089)	5,69 (,224)
	3	mm (in.)	3.50 (.138)	2, 36 (, 093)	2, 43	2,43 (,095)	2,46 (,097)	2, 48 (, 097)	3,43 (.135)	2,21 (.087)	2.11 (.083)	1,98 (.078)	2.07 (.081)	2.01 (.079)	2,08 (.082)	2, 21	2, 17 (, 085)	2, 20 (, 086)	2.25 (.088)	2, 29 (, 090)	2,21	2, 20	2, 22	5.66
	4	mm (in)	3. 44 (. 135)	2,41	2.41	2,45	2,49	2.50	3,50	2.30	2.12	1.97	2,03	2,08	2.02	2.08	2.10	2.15	2,08	2, 16	2.18	2,21	2.22	5.69
Blank	5	mm	3.40	2,40	2,43	2.44	2.49	2.49	3, 48	2,26	2.11	1,98	2,02	2.06	2. 15	2, 10	(1002) 2.07	(. 004) 2.07	(, 082) 2, 08	(. 035) 2. 17	(. 086) 5, 00	(. 087) 5. 10	(. 087) 5. 31	(. 224) 5. 59
л	6	(in,) mm	(, 134) 3.42	(, 094) 2, 48	2,41	(. 096) 2.41	(. 098) 2. 43	(. 098) 2. 49	(. 137) 3.44	(, 089) 2, 22	(. 083) 2. 11	(. 078) 1, 93	(, 079) 2, 01	(.081) 2.01	(.084) 2.06	(, 082) 1, 99	(, 081) 2.04	(. 081) 2. 06	(. 082) 2, 11	(. 085) 2. 13	(, 197)	(, 201)	(, 209)	(. 220
	-	(in₊) mm	(. 134) 3, 43	(, 097) 2, 39	(. 095) 2, 39	(. 095) 2. 40	(. 095) 2. 41	(. 098) 2, 45	(. 135) 3. 34	(.087) 2.18	(, 083) 2, 03	(. 076) 1, 96	(. 079) 1, 98	(. 079) 1. 97	(. 081) 1, 99	(. 078) 4. 11	(. 080) 4. 29	(.081) 4.50	(. 083) 4. 65	(. 084) 4. B0				
		(in.) mm	(, 135 <u>)</u> 3, 48	(. 094) 2. 44	(, 094) 2, 41	(. 094) 2. 41	(. 095) 2. 43	(. 096) 2. 39	(. 131) 3. 37	(. 086) 2, 18	(.080) 2.10	(. 077) 2. 01	(. 078) 1. 99	(.077) 1.98	(, 078) 1, 96	(. 162)	(, 169)	(. 177)	(. 183)	(. 189)				
	8	(in.)	(. 137) 3.50	(. 098) 2. 40	(. 095)	(. 095) 9. 90	(. 095)	(. 094)	(. 132)	(. 086) 2 25	(. 082)	(. 079)	(.078)	(. 078)	(.077)									
	9	(in.)	(, 138)	(. 134)	(. 128)	(. 130)	(, 129)	(. 125)	(, 124)	(, 132)	(, 135)	(, 140)	3. 58 (. 141)	3.63 (.143)	3, 81 (. 150)	<u> </u>								
	1	mm (in,)	3, 52 (, 138)	3,32 (.130)	, 325 (, 128)	3, 33 (. 131)	3, 32 (, 130)	3, 12 (, 123)	3.14 (.123)	3.40 (.134)	3, 49 (, 137)	3.63 (.143)	3. 72 (. 146)	3, 72 (, 146)	3,98 (.156)	4.22 (,166)	4.36 (.171)	4.61 (.181)	4.70 (.185)	4.85 (.191)	5.03 (.198)	5.08 (.200)	5.31 (.209)	5.51 (.217)
	2	mm (in.)	3, 56 (, 140)	2,39 (.094)	2,43 (.095)	2.44 (.096)	2.43 (.095)	2.40 (.094)	3,34 (,131)	2.15 (.084)	2,17 (.085)	2,06 (.081)	2, 11 (, 083)	2,08 (,082)	2,13 (.084)	2, 16	2.18 (.086)	2.18 (.086)	2.22 (.087)	2,25 (.088)	2.25 (.088)	2,24 (,088)	2,24 (,088)	5,66 (,223)
	3	mm (in,)	3, 47 (, 136)	2.37 (.093)	2,40	2.40 (.094)	2, 43 (. 095)	2,44	3,43 (,135)	2, 18 (, 086)	2,11	1, 94 (, 076)	2,03	1,98	2, 11 (. 183)	2, 17	2,20	2, 20 (. 086)	2,22	2,26	2,20	2.20	2.24	5.64
	4	mm (in)	3, 43 (135)	2.37	2.39	2.41	2.45	2.49	3.48	2.26	2, 13	1,90	2.01	2.07	2.01	2.07	2.08	2.13	2, 13	2, 15	2, 13	2.16	2.21	5. 64
Blank B	5	mm	3, 39	2,36	2.40	2.40	2.44	2.46	3,44	2,21	2.12	1, 90	2, 01	2,02	2. 12	2.04	(. 002) 2. 06	(, 034) 2, 08	2, 11	(, 004) 2, 13	(+ 084) 4, 92	(. 085) 5, 08	(. 087) 5. 23	(. 222) 5. 46
2	6	mm	(. 133) 3. 34	2,35	2.37	(, 094) 2, 39	(. 056)	2.43	(, 105) 3, 43	(. 087) 2. 18	(. 083) 2. 08	(. 075) 1, 89	(. 079) 1, 94	(. 079) 1.98	(. 083) 2, 03	1.96	(, 081) 1, 99	(, 082) 2. 03	(. 083) 2, 10	(. 084) 2, 11	(. 193)	(. 200)	(, 206)	(. 215)
	7	(in.) mm	(. 131) 3.40	(, 092) 2, 35	(. 093) 2.36	(, 094) 2, 35	(. 095) 2. 37	(. 095) 2. 30	(, 135) 3, 25	(. 086) 2. 15	(. 082) 2, 03	(. 074) 1. 90	(. 076) 1, 93	(, 078) 1, 9 4	(. 080) 1. 94	4.06	(.078) 4.27	(.080) 4.46	(. 082) 4. 65	(. 083) 4. 78				
	,	(in.) mm	(. 134) 3, 48	(, 092) 2, 36	(. 093) 2, 36	(. 092) 2, 37	(, 093) 2, 37	(.090) 2.31	(. 128) 3, 27	(. 084) 2. 16	(. 080) 2, 11	(. 075) 1, 93	(. 076) 1. 96	(. 076) 1, 93	(. 076) 1, 94	(. 160)	(, 168)	(, 175)	(, 183)	(, 188)				
	0	(in.) mm	(, 137) 3, 49	(.093) 3.35	(. 093) 3, 19	(. 093) 3. 30	(, 093) 3, 28	(.091) 8.07	(. 128) 3. 29	(. 085) 3. 38	(. 083) 3. 45	(. 076) 3. 55	(, 077) . 3. 60	(. 076) 3. 65	(, 076) 3. 76									
	9	(in.)	(. 137)	(, 132)	(. 125)	(, 130)	(. 129)	(. 121)	(. 129)	(. 133)	(. 136)	(. 139)	(, 142)	(. 143)	(. 148)	<u> </u>								
	1	mm (ln.)	3.47 (.136)	3, 35 (, 132)	3.30 (.130)	3, 37 (, 132)	3, 39 (, 133)	3, 34 (, 131)	3, 35 (, 132)	3,40 (,134)	3, 52 (. 138)	3.59 (.141)	3, 68 (, 145)	3,77 (,148)	3, 99 (, 157)	4. 18	4.34 (.171)	4.55 (.179)	4,72 (.186)	4,90 (.193)	5.07 (.199)	5.18 (.204)	5.38 (.212)	5,41 (,213)
	2	mm (in.)	3.48 (.137)	2,18 (,086)	2,17 (,085)	2,20 (.086)	2, 21 (. 087)	2.21 (.087)	3, 37 (, 132)	2.10 (.082)	2,11 (.083)	1,96 (.077)	2, 01 (, 079)	1.97 (.077)	2.06 (.081)	2.11 (.083)	2,15 (.084)	2.17 (.085	2,13 (,084)	2,20 (,086)	2,26 (.089)	2, 22 (, 087)	2.26 (.089)	5.44 (.214)
	3	mm (in.)	3.44 (.135)	2,18 (.086)	2, 18 (. 086)	2,21 (.087)	2, 21 (. 087)	2.21 (.087)	3.38 (.133)	2.13 (.084)	2, 10 (. 082)	1, 98 (. 078)	1, 96 (, 077)	1.99 (.078)	2,04 (.080)	2.10	2, 12 (. 083)	2.16 (.085)	2,21 (.087)	2,24 (.088)	2, 18 (. 086)	2,20 (,086)	2.17 (.085)	5.44 (.214)
	4	mm (in.)	3, 38 (, 133)	2,20 (.086)	2.20 (.086)	2,21 (.087)	2, 22 (, 067)	2, 22 (. 087)	3.45 (.136)	2.21 (.087)	2.07 (.081)	1,96 (,077)	1.96 (.077)	2.01 (.079)	1.99 (.078)	2.02	2.03	2.07 (.081)	2, 12	2.16	2.16	2,20	2,22	5.41 (213)
Blank C	5	mm (in.)	3, 35 (- 132)	2.20	2,18	2,21	2,21	2,21	3.44 (135)	2.24	2,08	1,94	1.94	1,98	2.04	1,98	2.02	2.04	2, 10	2, 13	5.02	5,21	5,38	5.44
-	6	mm	3, 33	2.17	2, 17	2.17	2. 18	2. 18	3,42	2, 17	2,08	1,94	1.92	1,94	(. vov) 2. 01	1,96	1.98	2.03	(. 082) 2. 06	(. 084) 2. 10	(• тал)	(, 205)	(. 212)	(. 214)
	7	mm	3, 38	(. 085) 2. 15	(. 005) 2.15	(. 080) 2, 15	(. 086) 2. 15	(. 086) 2. 16	(. 134) 3, 39	(. 085) 2, 15	(. 082) 2. 06	(.076) 1,94	(. 075) 1, 92	(. 076) 1. 93	(. 079) 1. 96	(• 077) 4, 10	(, 078) 4, 29	(. 080) 4.48	(. 081) 4. 67	(, 082) 4, 85				
	•	(in.) mm	(, 133) 3 , 4 3	(. 184) 2. 17	(. 184) 2, 15	(. 184) 2. 16	(, 184) 2. 15	(. 185) 2. 16	(. 133) 3. 33	(. 084) 2, 11	(, 081) 2, 03	(, 076) 1, 97	(. 075) 1, 93	(.076) 1,91	(. 077) 1,85	(, 161)	(. 169)	(, 176)	(. 184)	(. 191)				
	8	(in.) mm	(, 135) 3, 45	(. 085) 3, 35	(, 064) 3, 29	(.085) 3.27	(, 084) 3, 27	(. 085) 3. 24	(. 131) 3, 22	(. 083) 3. 20	(, 080) 3, 37	(, 077) 3, 50	(. 076) 3. 59	(, 075) 3, 68	(. 073) 3, 87									
	9	(in.)	(, 136)	(. 132)	(129)	(. 128)	(, 128)	(. 127)	(. 126)	(. 126)	(, 132)	(. 138)	(. 141)	(, 145)	(. 152)	ŀ								

FOLDOUT FRAME

1

2-19

FOLDOUT FRAME

2_

Table 2-4. Thickness Difference, Sheets A, B, and C

1

Gore		Station													· ·									
Blank	Line		A	В	c	D	E	F	Fx	G	Gx	н	Hx	I	J	к	L	M	N	0	P	Q	R	8
	1	mm (in.)	. 015 (. 0006)	. 086 (. 0034)	.063 (.0025)	.063 (.0025)	. 101 (. 004)	254 (.010)	.051 (.002)	.038 (.0015)	.025 (.001)	.013 (.0005)	.025 (.001)	.025 (.001)	.013 (.0005)	.089 (.0035)	.089 (.0035)	. 089 (. 0035)	.076 (,003)	. 102 (. 004)	. 127 (. 005)	. 229 (. 009)	.229 (.009)	. 127 (. 005)
	2	mm (in.)	.020 (.0008)	.063 (.0025)	.063 (.0025)	.025 (.001)	.051 (.002)	. 076	.015 (.9005)	.076 (.003)	.051 (.002)	.063 (.0025)	.051 (.002)	.051 (.002)	.051 (.002)	.063 (.0025)	.051 (.002)	.102 (.004)	.051	.051 (.002)	.063 (.0025)	.076 (.003)	.089 (.0035)	,051 (,002)
	3	(in.)	, 005 (, 0002)	. 051 (. 002)	. 051 (. 002)	.0015)	• 001 (• 002)	(.001)	0	(, 0025)	(. 004)	. 140 (. 0055)	(. 003)	. 104 (. 004)	(, 0035)	(. 002)	. 089 (. 0035)	. 102 (. 004)	(. 002)	, 063 (, 0025)	.076 (.003)	. 089 (. 0035)	. 102 (. 004)	.025 (.001)
	4	mm (in.)	0 0	.038 (.0015)	.051 (.002)	.038 (.0015)	. 025 (. 001)	.015 (.0005)	0 0	0, 063 (, 0025)	. 102 (. 004)	. 152 (. 006)	.114 (.0045)	.114 (.0045)	.102 (.004)	.063 (.0025)	.076 (.003)	.063 (.0025)	. 114 (. 0045)	.063 (.0025)	.051 (.002)	. 056 (. 0022)	.076 (.003)	.025 (.001)
Blank A	5	mm (in.)	.010 (.0004)	.025 (.001)	.051 (.002)	.051 (.002)	.025 (.001)	.015 (.0005)	0 0	.051 (.002)	. 102 (. 004)	. 140 (. 0055)	.089 (.0035)	.127 (.005)	,063 (,0025)	.051 (.002)	.063 (.0025)	. 076 (. 003)	.076 (.003)	.038 (,0015)	.076 (.003)	. 178 (. 007)	. 152 (. 006)	. 102 (, 004)
	6	mm (in.,)	.010 (.0004)	.038 (.0015)	.038. (.0015)	.051 (.002)	.025 (.001)	0. 0	0 0	.038 (.0015)	.076 (.003)	. 165 (. 0065)	.038 (.0015)	,127 (,005)	, 089 (, 0035)	.051 (.002)	.051 (.002)	.051 (.002)	.051 (.002)	.076 (.003				
	7	mm (in.)	. 015 (. 0006)	025 (.001)	.051 (.002)	,038 (,0015)	.025 (.001)	.015 (.0005)	0 0	.063 (.0025)	.102 (.004)	. 102 (. 004)	• 076 (. 003)	.076 (.003)	, 063 (, 0025)	.076 (.003)	.076 (.003)	.076 (.003)	. 114 (. 0045)	.140 (.0055)				
	8	mm (in.)	, 015 (, 0005)	0 0	.025 (.001)	.038 (.0015)	.038 (.0015)	.051 (.002)	.015 (.0005)	.051 (.002)	, 063 (, 0025)	.051 (.002)	.063 (.0025)	.051 (.002)	.051 (.002)				ļ					
	9	mm (in.)	.005 (.0002)	.051 (.002)	, 038 (, 0015)	.015 (.0005)	.038 (.0015)	. 140 (. 0055)	. 089 (. 0035)	0 0	.025 (.001)	. 025 (. 001)	.038 (.0015)	.051 (.002)	, 063 (, 0025)									
	1	mm (in.,)	. 127 (. 0005)	.089 (.0035)	.051 (.002)	.025 (.001)	. 076 (. 003)	. 218 (, 0086)	.165 (.0065)	. 013 (. 0005)	.013 (.0005)	. 038 (. 0015)	.025 (.001)	.051 (.002)	.028 (.0011)	.063 (.0025)	.076 (.003)	. 089 (. 0035)	. 127 (. 005)	.127 (.005)	.127 (.005)	, 229 (, 009)	.279 (.011)	.178 (,007)
	2	mm (in.)	. 127 (, 0005)	.051 (.002)	.038 (.0015)	.025 (.001)	.051 (,002)	.102 (.004)	.013 (.0005)	.089 (.0035)	.063 (.0025)	.051 (.002)	.051 (.002)	.038 (.0015)	.066 (.0026)	.063 (.0025)	.051 (.002)	, 063 (, 0025)	.076 (.003)	.063 (.0025)	, 063 (, 0025)	.114 (.0045)	. 114 (. 0045)	.089 (.0035)
	3	mm (in.,)	. 013 (. 0005)	.038 (.0015)	.054 (.0021)	.038 (.0015)	.051 (.002)	.038 (.0015)	0 0	, 063 (, 0025)	.089 (.0035)	, 140 (, 0055)	.089 (.0035)	, 092 (, 0036)	.076 (.003)	.076 (.003)	, 063 (, 0025)	.063 (.0025)	.076 (.003)	.076 (.003)	.089 (.0035)	.114 (.0045)	.102 (.004)	.114 (.0045)
	4	mm (in.)	0 0	.051 (.002)	.051 (.002)	.051 (.002)	.038 (.0015)	.016 (.0006)	.013 (.0005)	.051 (.002)	. 089 (. 0035)	.178 (.007)	, 127 (, 005)	, 102 (, 004)	, 102 (. 004)	.063 (.0025)	.076 (.003)	.063 (.0025)	.076 (.003)	.063 (.0025)	.089 (.0035)	.089 (.0035)	. 089 (. 0035)	. 127 (. 005
Blank B	5	mm (in.)	. 013 (. 0005)	.038 (.0015)	.054 (.0021)	.051 (.002)	.025 (.001)	.025 (.001)	,013 (,0005)	,051 (,002)	.089 (.0035)	.178 {.007}	.116 (.0046)	,127 (,005)	, 102 (, 004)	. 076 (. 003)	.076 (.003)	.076 (.003)	.063 (.0025)	.063 (.0025)	.114 (.0045)	.178 (.007)	.254 (.010)	.178 (.007)
	6	mm (in,)	.013 (.0005)	.025 (.001)	.051 (.002)	.051 (.002)	, 025 (, 001)	,013 (,0005)	0 0	.063 (.0025)	. 102 (. 004)	. 165 (. 0065)	, 127 (, 005)	.127 (.005)	, 189 (, 0035)	.076 (.003)	.063 (.0025)	. 051 (. 002)	.063 (.0025)	.051 (.002)				
	7	mm (in.)	0 0	.028 (.0011	.051 (.002)	. 063 (, 0025)	.038 (.0015)	.038 (.0015)	. 025 (. 001)	.054 (.0021)	.063 (,0025)	. 102 (. 004)	.102 (.004)	, 102 (, 004)	, 063 (, 0025)	.089 (.0035)	.102 (.004)	.114 (.0045)	. 089 (. 0035)	.165 (.0065)				
	8	mm (in.)	0 0	. 038 (. 0015)	.016 (.0006)	.038 (.0015)	.038 (.0015)	, 102 (, 004)	.025 (.001)	. 038 (. 0015)	.025 (.001)	. 076 (. 003)	. 063 (, 0025)	.051 (.002)	.051 (.002)									
	9	mm (in.)	. 023 (. 0009)	. 051 (. 002)	.063 (.0025)	0 0	.063 (.0025)	. 229 (. 009)	.038 (.0015)	.013 (.0005)	.025 (.001)	.051 (.002)	.038 (.0015)	.038 (.0015)	.089 (.0035)						×			
	1	mm (in,)	. 013 (. 0005)	. 013 (. 0005)	0	.025 (.001)	.025 (.001)	,063 (,0025)	0	.013 (.0005)	.013 (.0005)	0 0	.013 (.0005)	.025 (.001)	,025 (.001)	.013 (.0005)	.025 (.001)	.025 (.001)	.025 (.001)	0 0	0 0	.025 (.001)	.152 (.006)	.025 (,001)
	2	mm (in.)	0 0	.013 (.0005)	.025 (.001)	.013 (.0005)	.013 (.0005)	.013 (.0005)	0 0	0 0	0 0	.038 (.0015)	.025 (.001)	.025 (.001)	,013 (.0005)	.038 (.0015)	.038 (.0015)	.025 (.001)	.025 (.001)	.038 (.0015)	.025 (.001)	.025 (.001)	.038 (.0015)	0 0
	3	mm (in.)	0 0	0 0	.013 (.0005)	.013 (.0005)	.013 (.0005)	, 013 (, 0005 <u>)</u>	0 0	.051 (.002)	.038 (.0015)	• 063 (• 0025)	.076 (.003)	.063 (.0025)	.038 (.0015)	.051 (.002)	.051 (.002)	.051 (.002)	.025 (.001)	. 038 (. 0015)	.025 (.001)	.025 (.001)	, 076 (. 003)	.025 (.001)
	4	mm (in.)	0 0	0 0	.013 (.0005)	.013 (.0005)	.013 (.0005)	.025 (.001)	0 0	.051 (.002)	.063 (.0025)	.089 (.0035)	.089 (.0035)	.063 (.0025)	.076 (.003)	. 063 (. 0025)	.051 (.002)	.051 (.002)	.025 (.001)	. 025 (. 001)	. 025 (. 001)	. 025 (. 001)	.013 (.0005)	.025 (.001)
Blank C	5	mm (in.)	0 0	. 013 (. 0005)	. 025 (. 001)	.013 (.0005)	. 013 (. 0005)	.025 (.001)	0 0	.013 (.0005)	.051 (,002)	.089 (.0035)	. 102 (. 004)	.089 (.0035)	.051 (.002)	.063 (.0025)	.038 (.0015)	. 038 (. 0015)	. 025 (. 001)	. 013 (. 0005)	. 025 (. 001)	.025 (.001)	.051 (.002)	, 025 (, 001)
	6	mm (in.)	0 0	.013 (.0005)	.013 (.0005)	.013 (.0005)	.013 (.0005)	, 025 (, 001)	.013 (.0005)	.051 (.002)	.025 (.001)	.076 (.003)	.089 (.0035)	.089 (.0035)	, 051 (, 002)	.038 (.0015)	.025 (.001)	. 025 (, 001)	, 025 (, 001)	. 013 (. 0005)				
	7	mm (in.)	0 0	0 0	.013 (.0005)	. 013 (. 0005)	.013 (.0005)	0 0	0 0	.038 (.0015)	.038 (.0015)	.051 (.002)	. 063 (, 0025)	, 063 (, 0025)	.038 (.0015)	.013 (.0005)	, 025 (, 001)	.025 (,001)	.025 (.001)	025 (.001)				
	8	mm (in.)	0 0	. 013 (. 0005)	0 0	0 0	.013 (.0005)	0 0	0 0	.051 (.002)	.013 (.0005)	. 025 (. 001)	.038 (.0015)	.038 (.0015)	. 038 (. 0015)									
	9	mm (in.)	0 0	. 013 (. 0005)	.013 (.0005)	.013 (.0005)	. 013 (. 0005)	0 0	.025 (.001)	.038 (.0015)	.013 (.0005)	.013 (.0005)	.013 (,0005)	.025 (.001)	.025 (.001)									
											·	_								1				

FOLDOUT FRAME

2-20

ð

Figure 2-15. Gore A on Die

Figure 2-16. Gore A Showing Springback

The large gap at the base end of all the formed gores was caused by a limitation of the stretch press. This limitation is the 45-degree maximum rotation of the jaws in the vertical plane, which prevented the part from being stretched tightly against the die at the base end. If the jaws could have been raised to a 50- to 55-degree angle, contact with the die could have been achieved.

Each elongation inspection circle was checked, using a scale and magnifying glass, and recorded. The percent of elongation in the longitudinal and transverse directions were calculated by comparing the initial circle diameters to the ellipse major and minor axis lengths. Figure 2-17 shows typical elliptical distortion of the inspection circles that took place on Gore B during the forming operation. Stations Gx, H, and Hx had the greatest elongation. This is shown in Table 2-5. The percent of elongation for each blank is shown in Table 2-6. For clarification of the high areas of elongation a pictorial, or elevation type drawing of the longitudinal elongation was prepared for each blank (Figures 2-18, 2-19, and 2-20). The incomplete elongation in gore Blank C can be readily seen in the comparison of these figures. The data for the transverse elongation was also recorded and is found in Tables 2-7 and 2-8.

Figure 2-17. Gore Blank B Elliptical Inspection Circles Reproduced from best available copy.

Table 2-5. Circular Grid Measurements, Longitudinal, Sheets A, B, and C

																						1.0		
Gore													Sta	tion										
Blank	Line		A	B	<u>c</u>	D	E	F	Fx	G	Gx	Н	Hx	I	J	к	L	м	N	0	Р	Q	R	s
	1	mm (in.)	50,8 (2,00)	52, 1 (2, 05)	51,6 (2,03)	51, 8 (2, 04)	52, 3 (2, 06)	55.1 (2.17)	-	51, 1 (2, 01)	51, 3 (2, 02)	51.3 (2.02)	51,3 (2,02)	51, 3 (2, 02)	51.8 (2.04)	52.6 (2.07	52, 3) (2, 06)	52, 1 (2, 05)	52, 1 (2, 05)	52, 3 (2, 06)	52.6 (2.07)	52, 8 (2, 08)	52.8 (2.08)	51.8 (2.04)
	2	mm (in.)	50.8 (2.00)	52.6 (2.07)	51,8 (2,04)	52.1 (2.05)	52,6 (2,07)	52.3 (2.06)	-	53.1 (2.09)	53.1 (2.09)	52.8 (2.08)	. 52.6 (2.07)	52.6 (2.07)	52.6 (2.07)	52.8 (2.08	52.8) (2.08)	53.3 (2.10)	52.6 (2.07)	52,8 (2,08)	53.3 (2.10)	53.8 (2.12)	53.6 (2.11)	50. 8 (2.00)
	3	mm (in.)	50.5 (1.99)	52,1 (2,05)	52,1 (2,05)	51, 8 (2, 04)	51,8 (2,04)	51.1 (2.01)	-	53, 1 (2.09)	54.1 (2.13)	54,6 (2,15)	53.8 (2.12)	53,8 (2,12)	53. 6 (2.11)	53. 1 (2. 09	53, 3) (2, 10)	53.8 (2.12)	53, 1 (2, 09)	52, 8 (2, 08)	53.3 (2.10)	53.8 (2.12)	53.6	50.8 (2.00)
	4	mm (in.)	50.5 (1.99)	52, 1 (2, 05)	52, 1 (2, 05)	51,8 (2,04)	51,6 (2,03)	51, 1 (2, 01)	-	52.6	54.4 (2.14)	55.4 (2.18)	55.6 (2.19)	54.6 (2.15)	54.4	53.8	53.3	52.8	54.4	53,1	53,1	53.3 (2.10)	53,1	50.5
Blank	5	mm (in)	50.8	51,8	52,1	52,1	51.1	50.8	-	52.6	(2. 14)	56.1	56,1	55.4	53.6	53.3	53.1	53.B	(2.14) 54.1	(2.09) 53.1	(2,05) 52,1	(2, 10) 52, 1	(2,09) 52,3	(1.99) 50,8
4	6	mm (iiii)	50.5	(2, 01) 51, 6	52,1	(2.03) 52.1	51,3	(2.00) 51.1	-	52.3	(2.14) 54.1	(2,21) 55,9	(2.21) 55.6	(2, 18) 54, 9	(2.11) 53,8	52.8) (2.09) 52.8	(2.12) 53.1	(2, 13) 52, 8	(2.09) 53.3	(2, 05)	(2, 05)	(2,06)	(2,00)
	7	(111.) mm	(1.99) 50.5	(2,03) 51,6	(2,05) 51,6	(2, 05) 51, 8	(2,02) 51,8	(2.01) 51.1	-	(2.06) 52.8	(2, 13) 54. 1	(2,20) 54.6	(2. 19) 54. 4	(2, 16) 53.6	(2,12) 53,3	(2.08 51.8) (2.08) 52.1	(2.09) 52.3	(2.08) 52.8	(2,10) 53,1				
		(in.) mm	(1.99) 50.5	(2,03) 51,6	(2.03) 51.6	(2.04) 51.8	(2,04) 52,1	(2,01) 52,3	-	(2.08) 52.6	(2, 13) 52, 8	(2,15) 52,8	(2, 14) 52, 6	(2.11) 52.6	(2, 10) 52, 8	(2, 04) (2.05)	(2.06)	(2. 08)	(2, 09)				
	0	(in.)	(1.99)	(2,03)	(2.03)	(2.04)	(2,05)	(2.06)	-	(2.07)	(2, 08)	(2, 08)	(2.07)	(2.07)	(2.08)	Į								
	9	(in.)	50.5 (1.99)	(2, 01)	51,3 (2,02)	(2, 02)	52.1 (2.05)	54.9 (2.16)	-	(2.01)	51, 1 (2, 01)	51.3 (2.02)	51,3 (2,02)	51,6 (2,03)	51,8 (2,04)								,	
	1	mm (in.)	50, 5 (1, 99)	51, 8 (2, 04)	51, 8 (2, 04)	51,3 (2,02)	52.3 (2.06)	-	-	51,3 (2,02)	51, 3 (2, 02)	51,3 (2,02)	51.6 (2.03)	51.6 (2.03)	51.6 (2.03)	52.1 (2.05	52.3 (2.06)	52, 3 (2, 06)	52, 8 (2, 08)	53.3 (2.10)	53.3 (2.10)	53, 3 (2, 10)	53.6 (2.11)	52, 3 (2, 06)
1	2	mm (in.)	50.8 (2.00)	52.3 (2.06)	51.8 (2.04)	52.1 (2.05)	52.6 (2.07)	53.3 (2.10)	-	53, 8 (2, 12)	53, 3 (2, 10)	52. 8 (2. 08)	52.3 (2.06)	52.6 (2.07)	52.3 (2.06)	52.6 (2.07	52.8) (2.08)	52, 8 (2, 08)	53,1 (2,09)	53.3 (2.10)	53.6 (2.11)	54.6 (2.15)	54.4 (2.14)	50,8 (2,00)
	3	mm (in,)	50.8 (2.00)	52,1 (2,05)	52,1 (2,05)	52.1 (2.05)	52.1 (2.05)	51.6 (2.03)	-	53,1 (2,09)	54.6 (2.15)	54,9 (2,16)	54.4 (2.14)	54, 1 (2, 13)	53, 1 (2, 09)	53,1	53, 1 (2, 09)	53,6 (2,11)	53,3 (2,10)	53.3 (2.10)	53.8 (2.12)	54, 6 (2, 15)	53.8 (2.12)	50, B
	4	mm (in.)	50.8 (2.00)	51, 6 (2, 08)	52.8 (2.06)	52.3 (2.06)	51.3	51, 3 (2, 02)	-	52,3 (2,06)	55.4 (2.18)	56.4 (2.22)	55.4 (2.18)	54.6 (2.15)	54, 1 (2, 13)	53.8	53,3	53.3 (2.10)	53.3 (2 10)	53.6	54.1	64.4	53.8	50,8
Blank	5	mm (in)	50.5	51.6	52.3	52, 3	51.3	51, 1	-	52.3	54.9	56.4	55.4	55.1	53.8	53.8	53.6	53.3	53.6	53.3	53.3	(2. 14) 52. 6	(2.12) 52.8	51,6
5	6	mm	50, B	51.6	52.1	(2, 00) 52.1	51.3	51.3	_	(2,00) 52.8	(2, 10) 54.4	(2.22) 55.4	(2.13) 55.1	(2.17) 55.1	(2.12) 53.8	53.8	53.3	(2.10) 53.1	(2, 11) 53.3	(2.10) 53.3	(2.10)	(2.07)	(2,08)	(2, 03)
	7	mm	(2,00) 50,8	(2, 03) 51, 6	(2.03) 51.8	(2.05) 52.1	(2.02) 51.8	(2.02) 51.3	-	(2,03) 52.6	(2.14) 53.8	(2.18) 54.1	(2.17) 54.1	(2. 17) 54. 4	(2.12) 53.6	52.5	(2.10) 52.6	(2.09) 52.6	(2.10) 52.3	(2.10) 53.1				
	8	(1n.) mm	(2,00) 50,5	(2.03) 51.6	(2.04) 51.8	(2.05) 51.6	(2.04) 52.1	(2, 02) 52, 6	-	(2,07) 52,3	(2, 12) 52, 3	(2, 13) 52, 6	(2, 13) 52, 6	(2, 14) 52, 3	(2,11) 53,1	(2.06) (2.07)	(2.07)	(2, 06)	(2, 09)				
		(in.) mm	(1,99) 50,5	(2.03) 51.1	(2.04) 51.6	(2.03) 51.6	(2.05) 52.1	(2.07) 54.9	-	(2.06) 51.1	(2.06) 51.1	(2,07) 51,6	(2.07) 51.3	(2.06) 51.6	(2.09) 52.3									
•	9	(in.)	(1, 99)	(2,01)	(2.03)	(2.03)	(2.05)	(2.16)	-	(2.01)	(2.01)	(2,03)	(2.02)	(2, 03)	(2,06)									
	1	mm (in.)	50.8 (2.00)	50.8 (2.00)	51, 1 (2, 01)	-	50.8 (2.00)	50, 8 (2, 00)	· _	50,5 (1,99)	50.8 (2.00)	50,8 (2,00)	51, 1 (2, 01)	-	51,1 (2,01)	51,1 (2,01	51.1 (2.01)	50.8 (2.00)	50.8 (2.00)	51, 1 (2, 01)	51, 1 (2, 01)	51.3 (2.02)	51,3 (2,02)	51, 1 (2, 01)
	2	mm (in.)	50.8 (2.00)	51,1 (2,01)	51.3 (2.02)	51, 1 (2, 01)	50.8 (2.00)	51, 1 (2, 01)	-	51.6 (2.03)	51.3 (2.02)	51.6 (2.03)	51.8 (2.04)	52.1 (2.05)	51.8 (2.04)	51,6 (2.03	51.8 (2.04)	51,6 (2,03)	51.3 (2.02)	51.6 (2.03)	51.6 (2.03)	51.8 (2.04)	51, 8 (2, 04)	50, 8 (2, 00)
	3	mm (in.)	50,5 (1,99)	51 3 (2,02)	51.3 (2.02)	51.3 (2.02)	51, 1 (2, 01)	51, 1 (2, 01)	-	51,6 (2,03)	51,8 (2,04)	52, 8 (2, 08)	52.8 (2.08)	52, 6 (2, 07)	52.3 (2.06)	52.8 (2.06	51.8 (2.04)	52, 1 (2, 05)	51,6 (2,03)	51,6 (2,03)	51,6 (2,03)	52.1 (2.05)	52, 1 (2, 05)	50, 8 (2, 00)
	4	mm (in,)	50,5 (1,99)	51, 1 (2, 01)	51, 1 (2, 01)	50, 8 (2, 00)	51.1 (2.01)	51, 1 (2, 01)	- -	51, 3 (2,02)	52.1 (2.05)	53.6 (2.11)	53,3 (2,10)	53, 1 (2, 09)	52, 8 $(2, 9\beta)$	52.8 (2.98)	52.1 (2.05)	52, 1 (2, 05)	51.8 (2.04)	51.8 (2.04)	51.1 (2.01)	51, 3 (2, 02)	51, 6 (2, 03)	50.8 (2.00)
Blank C	5	mm (in.)	50,5 (1,99)	51, 1 (2, 01)	51.1 (2.01)	50.8 (2.00)	50.8 (2.00)	51, 1 (2, 01)		51,6 (2,03)	52.1 (2.05)	53.6 (2.11)	53.6 (2.11)	53.3 (2.10)	52.8 ÷	52.8	52, 1 (2, 05)	51.8 (2.04)	51.6 (2.03)	51.6 (2,03)	50,8 (2,00)	51, 1 (2, 01)	-	50.8 (2.00)
	6	mm (in.)	50, 5 (1, 99)	51, 1 (2, 01)	51.1 (2.01)	50.8 (2.00)	51.1 (2.01)	51, 1 (2, 01)	-	51.3	51, 8 (2, 04)	53.3 (2.10)	53.3 (2.10)	53.1 (2.09)	52,8 (2,08)	51,8	51,6	51.6	51.3	51,1	(• • • •	<u> </u>		(=• vv)
	7	mm	50.5	51,1	50.8	50.8	51, 1	51.1	-	51.3	51.3	52.3	52.6	52.8	52,3	51,	51.3	51.1	-	(4,01) 51,1				
	8	mm	(1. 00)	(2, 01) 51, 1	(2.,00) 50.8	(2.00) 50.8	(2.01) 50.8	(2, 01) 50, 8	-	(2.02) 50.8	(4, 03) 51,1	(4.06) 51.3	(2.07) 51.6	(z. 08) 51, 8	(2.06) 52.1	(2, 01)) (2,02)	(2.01)	-	(2.01)				
	9	(111,) mm	- (1,99)	(2,01) -	(2.00) 50.5	(2.00) -	(2,00) -	(2,00) 50,5	-	(2.00) 50.5	(2.01) 50.5	(2,03) 50,8	(2,03) 50,8	(2, 04) 51, 1	(2.05) 51.3			`						
	-	(in,)	-	-	(1.99)	-	-	(1, 99)	-	(1.99)	(1.99)	(2,00)	(2.00)	(2, 01)	(2, 02)	1								

FOLDOUT FRAME

5

ŵ.

2-23 FOLDOUT FRAME

Gore												Statio	on										
Blank	Line	A	В	C	D	E	F	Fx	G	Gx	Н	Hx	I	J	К	L	M	N	0	Р	Q	R	S
	1	.5	3	2	2.5	3.5	9.5	-	1	1.5	1.5	1.5	1.5	2,5	4	3.5	3	3	3.5	4	4.5	4.5	2.5
	2	.5	4	2,5	3	4	3.5	-	5	5	4.5	4	4	4	4.5	4.5	5.5	4	4.5	5,5	6,5	6	.5
	3	0	3	3	2.5	2.5	1	-	5	7	8	6.5	6, 5	6	5	5.5	6.5	5	4.5	5.5	6.5	6	. 5
	4	0	3	3	2.5	2	1	-	4	7.5	9.5	10	8	7.5	5.5	5.5	4.5	7.5	5	5	5.5	5	0
A	5	.5	2.5	3	3	1	.5	-	4	7.5	11	11	9.5	6	5,5	5	6.5	7	5	3	3	3.5	.5
	6	0	2	3	3	1.5	1	-	3,5	7	10,5	10	8.5	6,5	4.5	4,5	5	4.5	5.5				
	7	0	2	2	2.5	2,5	1	-	4.5	7	8	7.5	6	5.5	2,5	3	3.5	4.5	5				
	8	0	2	2	2.5	3	3.5	-	4	4.5	4.5	4	4	4.5									
	9	0	1	1,5	1, 5	3	8.5	-	1	1	1.5	1.5	2	2.5									
	1	0 *-	2.5	2,5	1, 5	3,5	-	-	1,5	1,5	1,5	2	2	2	3	3.5	3,5	4.5	5.5	5,5	5,5	6	3,5
	2	.5	3.5	2.5	3	4	5.5	-	6, 5	5.5	4. 5	3.5	4	3.5	4	4.5	4,5	5	5.5	6	8	7.5	.5
	3	.5	3	3	3	3	2	-	5	8	8.5	7.5	7	5	5	5	6	5.5	5,5	6.5	8	6,5	.5
	4	. 5	2	3.5	3.5	1.5	1.5	-	3.5	9.5	11.5	9.5	8	7	5.5	5.5	. 5, 5.	5,5	6	7.	7.5	6,5	.5
Blank B	5	0	2	3,5	3,5	1,5	1	-	3,5	8,5	11.5	9.5	9	6.5	6.5	6	5.5	6	5.5	5.5	4	4,5	2
_	6	.5	2	3	3	1.5	1.5	-	4.5	7.5	9.5	9	9	6,5	6,5	5.5	5	5,5	5.5				
	7	, 5	2	2.5	3	2.5	1, 5	-	4	6,5	7	7	7.5	6.	3,5	4	4	3.5	5				
	8	0	2	2.5	2	3	4	-	3.5	3.5	4	4	3.5	5									
	9	0	1	2	2	3	8.5	-	1	1	2	1.5	2	3.5									
	1	. 5	.5	1		.5	. 5	_	0	.5	.5	1	-	1	1	1	.5	.5	1	1	1.5	1.5	1
	2	. 5	1	1.5	1	.5	1	-	2	1.5	2	2.5	3	2.5	2	2,5	2	1.5	2	2	2.5	2, 5	.5
	3	0	l, 5	1.5	1.5	1	1	-	2	2,5	4.5	4,5	4	3.5	3,5	2,5	3	2	2	2	3	3	.5
	4	0	1	1	.5	1	1	-	1, 5	3	6	5.5	5	4.5	4.5	3	3	2, 5	2,5	1	1, 5	2	.5
Blank	5	0	1	1	.5	. 5	1	-	2	3	6	6	5,5	4.5	3,5	3	2,5	2	2	.5	1	-	.5
C	6	0	1	1	.5	1	1	-	1.5	2.5	5.5	5.5	5	4.5	2.5	2	2	1.5	1				
	7	0	1	.5	.5	1	1	-	1.5	2	3.5	4	4.5	3,5	1	1, 5	1	-	1				
	6	0	1	.5	• 5	.5	.5	_	.5	1	2	2	2,5	3									
	9	-	-	0	_	_	0	-	0	0	.5	.5	1	1.5									
· · ·					·····													··					

Table 2-6. Percent Longitudinal Elongation, Sheets A, B, and C

.

.

Figure 2-18. Longitudinal Elongation Distribution, Sheet A

Figure 2-19. Longitudinal Elongation Distribution, Sheet B

3

Figure 2-20. Longitudinal Elongation Distribution, Sheet C

Table 2-7. Transverse Elongation, Sheets A, B, and C

													Sta	tíon										
Gore Blank	Line		A	в	с	D	E	F	Fx	G	Gx	н	Hx	I	J	к	L	M	N	0	Р	ବ୍	R	<u>s</u>
	1	mm (in.)	-	-		-	-	-	-		50.8 (2.00)	50.5 (1.99)	50,5 (1,9 9)	50.0 (1.98)	50.0 (1.98)	50.1 (1.97)	50, 3 (1, 98)	50, 3 (1, 98)	50.3 (1.98)	50.3 (1.98)	49.8 (1.96)	50.1 (1.97)	50.1 (1,97)	50,3 (1,98)
	2	mm	50.8	50.3	50,3	50,5 (1.99)	50.35 (1.98)	50.5 (1.99)	-	50.1 (1.97)	50.1 (1.97)	50.3 (1.98)	50.0 (1.97)	50.0 (1.97)	50.0 (1.98)	50.1	50,3 (1,98)	50,1 (1,97)	50.3 (1.98)	50.1 (1.97)	49.8 (1.96)	49.8 (1.96)	50.1 (1.97)	50, 8 (2, 00)
	3	(m.) mm	(2.00) 50.8	(1. 58) 50.3	50.5	(1.33) 50,3	50.5	50.5	-	50.3	49.8	50,1	50.0	50.0	50.0	50.1	50,1	50,1	50.1	50,1	50.1	49.8	50,1	50,8
	J	(in.) mm	(2,00) 50.8	(1,98) 50.3	(1.99) 50.5	(1,98) 50,3	(1,99) 50,8	(1,99 50,5	-	(1.98) 50.3	(1.96) 50.1	(1,97) 49,8	(1,97) 49.0	(1,97) 49.0	(1.97) 49.0	(1.97) 50.1	(1, 97) 50, 1	(1.97) 50.1	(1, 97) 49, 8	(1.97) 50.1	(1,97) 50,1	(1.96) 50,1	(1,97) 50.3	(2.00) 50.8
	4	(in.)	(2.00)	(1.98)	(1.99)	(1,98)	(2,00)	(1,99	-	(1.98) 50.3	(1.97)	(1,96) 49-8	(1,96) 49 0	(1,96) 49.0	(1.96) 50.0	(1.97) 50.1	(1.97) 50.3	(1.97) 50.1	(1.96) 49 8	(1.97) 50-1	(1,97) 50.3	(1, 97) 50, 3	(1.98) 50.3	(2,00) 50,5
A	5	mm (in.)	50.8 (2,00)	50,5 (1,99)	50.5 (1.99)	(1,99)	(2,00)	(2,00	-	(1, 98)	(1, 97)	(1.96)	(1.96)	(1,96)	(1.97)	(1,97)	(1,98)	(1.97)	(1,96)	(1.97)	(1,98)	(1,98)	(1.98)	(1, 99)
	6	mm (in.)	50, 8 (2, 00)	50.8 (2.00)	50.5 (1.99)	50.5 (1.99)	50.8 (2.00)	50.8 (2.00)	-	50,1 (1,97)	50 .1 (1.97)	49.8 (1.96)	49.0 (1,96)	49.0 (1.96)	50,0 (1,97)	50,3 (1,98)	50, 3 (1, 98)	50,1 (1,97)	50,3 (1,98)	50, 1 (1, 97)				
	7	mm (in.)	50,8 (2,00)	50.8 (2.00)	50.3 (1.98)	50.5 (1,99)	50, 8 (2, 00)	50, 8 (2, 00	-	50,1 (1,97)	50.1 (1.97)	49.8 (1,96)	50,0 (1,97)	50,0 (1,97)	50,0 (1.97)	50,3 (1,98)	50,3 (1,98)	50,3 (1,98)	50.1 (1.97)	50.1 (1.97)				
	8	mm (in,)	50.8 (2.00)	50.8 (2.00)	50.3 (1.98)	50,3 (1,98)	50,5 (1,99)	50.5 (1,99	-	50.1 (1.97)	50.1 (1.97)	50,3 (1,98)	50,0 (1,98)	50,5 (1,99)	50.0 (1.98)									
	9	mm (in.)	-	-	-	-	-	-	-	-	-	50.0 (1.98)	50.0 (1.98)	50.5 (1.99)	50,5 (1,99)									
Blank B	1	mm			-	-		-	_		50,8	50,8	50.8	50.8	50.8	50.8	50.3	50.5	50,3	50.3	50.5	50.3	50.1	50.5
	-	(in.) mm	- 50.8	- 50.5	- 50.8	- 50.5	- 50,3	- 50,3	-	- 50,1	(2,00) 50,1	(2,00) 50,3	(2,00) 50,3	(2.00) 50.3	(2.00) 50.3	(2.00) 50.5	(1, 98) 50, 3	(1,99) 50,3	(1,98) 50,3	(1,98) 50.3	(1.99) 49.8	(1. 98) 49. 5	(1.97) 50,1	(1, 99) 51, 1
	z	(in.) mm	(2.00) 51.1	(1, 99) 50, 8	(2,00) 50,5	(1, 99) 50, 5	(1, 98) 50, 5	(1, 98 50, 5	-	(1,97) 50,3	(1,97) 49,8	(1,98) 49,8	(1,98) 49,8	(1,98) 50,1	(1.98) 50.3	(1.99) 50.3	(1,98) 50,3	(1.98) 50,3	(1,98) 50,1	(1.98) 50.1	(1.96) 49.8	(1.95) 49.5	(1.97) 50.1	(2.01) 50,8
	3	(in.)	(2.01)	(2.00)	(1,99)	(1.99)	(1.99)	(1.99 50.5	-	(1,98)	(1,96)	(1,96) 49 8	(1,96) 49.8	(1.97) 50 1	(1.98) 50-1	(1,98) 50-1	(1, 98) 50, 1	(1,98) 50 1	(1, 97) 50, 3	(1,97) 50,1	(1,96) 50,1	(1.95) 49.8	(1.97) 50.1	(2, 00) 50, 8
	4	(in.)	(2.00)	(2,00)	(1,98)	(1,98)	(2,00)	(1.99	-	(1, 99)	(1.97)	(1,96)	(1,96)	(1.97)	(1.97)	(1.97)	(1, 97)	(1,97)	(1, 98)	(1,97)	(1.97)	(1.96)	(1.97)	(2.00)
	5	mm (in.)	50,8 (2,00)	50, 8 (2, 00)	50.3 (1.98)	50,5 (1,99)	50, 8 (2, 00)	50,8 (2,00	• -	50,3 (1,98)	50.1 (1.97)	49.8 (1.96)	49.8 (1.96)	49.5 (1.95)	50, 1 (1, 97)	50,1 (1.97)	50,3 (1,98)	50,1 (1,97)	50, 1 (1, 97)	50.1 (1.97)	50.3 (1.98)	50,5 (1,99)	50.5 (1.99)	50, 8 (2, 00)
	6	mm (in.)	51.1 (2.01)	50,8 (2,00)	50,5 (1,99)	50.8 (2.00)	50.8 (2.00)	50.8 (2.00	-	50,3 (1,98)	50, 1 (1, 97)	50,1 (1,97)	50,1 (1,97)	49.8 (1.96)	50,1 (1,97)	50.1 (1.97)	50,3 (1,98)	50,3 (1,98)	50.3 (1.98)	50.5 (1.99)				
	7	mm (in.)	51, 1 (2, 01)	50.8 (2.00)	50,8 (2,00)	50,5 (1,99)	50, 5 (1, 99)	50.8 (2.00	-	50,3 (1,98)	50.3 (1,98)	50.1 (1.97)	50, 1 (1, 97)	50.1 (1.97)	50.3 (1.98)	50.3 (1.98)	50,3 (1,98)	50,5 (1,99)	50.5 (1.99)	50.3 (1.98)				
	8	mm (in)	50.8	50,5 (1,99)	50.8	50, 5 (1, 99)	50,5 (1,99)	50,5 (1,99		50.3 (1.98)	50,3 (1,98)	50,3 (1,98)	50,8 (2,00)	50.3 (1.98)	50.3 (1.98)									
	9	mm dm	-	-	-	-	-	-	-	-	50.5	50.5	-	-	50,3									
		mm		_	-	_		- i	_	-	50.3	50.5	50.3	50.5	50.3	_	50.8	50,5	50.5	50, 5	50.5	50.5	50,8	50,8
	T	(in.)	- 50.5	- 50.8		- 50. 5	- 50, 5	- 50, 8	- -	- 50.5	(1,98) 50,3	(1,99) 50,5	(1,98) 50,3	(1.99) 50.5	(1,98) 50,3	- 50,3	(2.00) 50.5	(1,99) 50,5	(1.99) 50.5	(1.99) 50.5	(1.99) 50.5	(1.99) 50.5	(2.00) 50.5	(2.00) 50.5
	2	(in.,)	(1.99)	(2,00)	(1.99)	(1,99)	(1,99)	(2.00	- ((1,99)	(1.98)	(1,99)	(1,98)	(1.99)	(1.98)	(1.98)	(1,99)	(1,99)	(1,99) 50.5	(1,99) 50 5	(1,99) 50.5	(1, 99) 50, 5	(1.99) 50 [°] 5	(1,99) 50.5
	3	mm (in.)	50,8 (2,00)	50,5 (1,99)	50.5 (1,99)	50,5 (1,99)	50,5 (1,99)	50.5 (1.99	-	60,5 (1,99)	50.5 (1.99)	30.3 (1,98)	30, 5 (1, 99)	50.3 (1,98)	(1, 98)	30.3 (1.98)	(1.98)	(1, 99)	(1, 99)	(1.99)	(1, 99)	(1, 99)	(1,99)	(1.99)
	4	<u>mm</u> (in.)	50, 5 (1, 99)	50, 5 (1, 99)	50,5 (1,99)	50,8 (2,00)	50, 8 (2, 00)	50,8 (2,00		50.5 (1.99)	50.5 (1.99)	50,5 (1,99)	50,5 (1,99)	50,5 (1,99)	50.3 (1.98)	50.3 (1.98)	50 .5 (1.99)	50.5 (1.99)	50,5 (1,99)	50,3 (1,98)	50,5 (1,99)	50,5 (1,99)	50.5 (1.99)	-
Blank C	5	mm (in.)	50,5 (1,99)	50.8 (2.00)	50.5 (1.99)	50,5 (1,99)	50,5 (1,99)	50,5 (1,99	-	50,8 (2,00)	50, 5 (1, 99)	50,5 (1,99)	50,5 (1,99)	50,5 (1,99)	50.5 (1.99)	50,3 (1,98)	50.3 (1.98)	50,5 (1,99)	50.5 (1,99)	50.5 (1.99)	50.5 (1.99)	50.5 (1.99)	50.5 (1.99)	-
	6	mm (in.)	50.5 (1.99)	50.5 (1.99)	50, 8 (2.00)	50,8 (2,00)	50,8 (2,00)	50.8 (2.00	-	50,5 (1,99)	50.5 (1,99)	50.5 (1.99)	50.5 (1.99)	50.5 (1.99)	50,3 (1,98)	50,5 (1,99)	50,5 (1,99)	50, 5 (1, 99)	50,5 (1,99)	50.5 (1.99)				
	7	mm (in)	50.8	50,8 (2.00)	50.8	50,8	50.8	50.8	-	50.8 (2.00)	50.5	50.5	50,5	50, 5 (1, 99)	50.3 (1.98)	50, 5 (1, 99)	50, 5 (1, 99)	50,5 (1,99)	50.5 (1,99)	50.5 (1.99)				
	в	mm	(2,00) 50,8	(2.00) 50,8	50,8	50,8	50,8	50, B	-	50.8	50.5	50.8	50.5	50,5	50.5	1-100/	()	(-10+)	, <i>j</i>	(_,_,_,				
	a	(in.) mm	(2, 00) -	(2.00) -	(2.00) -	(2.00) -	(2,00) -	(2,00 -) – –	(2.00)	(1.99) 50,5	(2,00)	(1.99) 50.3	(1,99) (1,99)	(1,99) 50,5									
,		(in.)	-	-			-		-		(1,99)	-	(1.98)	(1,98)	(1, 99)									

FOLDOUT FRAME

FOLDOUT FRAME

2-26

.

Gore								÷			v	Stat	lon			<u> </u>			<i></i>				
Blank	Line	A	В	с	D	E	F	Fx	G	Gx	Н	Нх	I	լ	к	L	М	N	о	Р	ଭ	R	s
	1	-	-	-	-	-	-	-	-	.5	0	0	5	5	-1	5	-, 5	-, 5	5	-1, 5	-1	-1	-, 5
	2	.5	5	5	0	5	0	-	-1	-1	-1.5	-1	-1	-, 5	-1	5	-1	5	-1	-1.5	-1.5	-1	.5
	3	• 5	-, 5	0	-, 5	0	0	-	-, 5	-1.5	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1,5	-1	.5
Alent	4	, 5	-, 5	0	5	.5	0	-	5	-1	-1.5	-1,5	-1.5	-1.5	-1	-1	-1	-1,5	-1	-1	-1	-,5	.5
A	5	.5	0	0	0	.5	. 5	-	5	~1	-1,5	-1,5	-1.5	-1	-1	5	-1	-1,5	-1	5	-, 5	5	0
	6	• 2	• 5	0	0	.5	.5	-	-1	-1	-1.5	-1, 5	-1.5	-1	-,5	5	-1	-1.5	-1				
•	7	. 5	.5	5	0	.5	.5	-	-1	-1	-1.5	-1	-1	-1	5	-,5	5	-1	-1				
	8	• 2	.5	5	-, 5	0	0	-	-1	-1	~.5	-,5	0	5									
	. 9	-	-	-	-	-	-	-	-	-	5	5	0	0									
	1	-	-	-	-	-	-	-	-	. 5	. 5	.5	.5	.5	.5	5	0	5	5	0	5	-1	
	2	.5	0	• 5	0	5	-, 5	-	-1	-1	5	-, 5	5	5	0	-, 5	5	 5	-, 5	-L.5	-2	-1	1
Blank B	3	1	. 5	0	0	0	0	-	- 5	-1.5	-1.5	-1.5	-1	5	5	- 5	5	-1	~1	-1,5	-2	-1	.5
	4	.5	.5	-, 5	-, 5	.5	0	-	0	-1	-1.5	-1.5	-1	-1	-1	-1	-1	5	-1	-1	-1.5	-1	. 5
	5	.5	.5	5	0	.5	. 5	-	5	-1	-1.5	-1.5	-2	-1	-1	5	-1	-1	-1	5	0	0	.5
	6	1	.5		.5	.5	.5	-	5	-1	~1	-1	-1.5	-1	-1	5	- 5	5	0				••
	7	1	.5	.5	0	0	. 5	-	-, 5	5	-1	-1	-1	5	-, 5	-, 5	0	0	5				
	8	.5	0	.5	0	0	0	-	5	5	5	.5	5	-,5									
	9	-	-	-	-	-		-	·	0	0	-	-	-,5									
	1		-	_	-	-	-	_	-	-, 5:	0	5	0	-,5		.5	0	0	0	0	0	.5	5
	2	0	. 5	0	0	0	.5	-	Û	-,5	0	-,5	0	5	5	0	0	0	0	0	0	0	0
	3	.5	0	0	0	0	0	-	0	0	-,5	0	5	5	5	5	0	0	0	0	. 0	0	0
	4	0	0	0	.5	.5	.5	-	0	0	0	0	0	5	5	0	0	D	5	0	0	0	_
Blank	5	0	.5	0	0	. 5	0	-	. 5	0	0	0	0	0	5	5	0	0	0	0	0	ů O	_
. Ŭ	6	0	0	.5	.5	. 5	. 5	-	.0	0	0	0	0	5	0	0	0	0	ů 0	·	v		-
	7	.5	.5	.5	.5	.5	.5	-	. 5	0	0	0	0	5	0	0.	0	0	0				
	8	. 5	.5	.5	.5	.5	. 5	_	. 5	0	. 5	0	0	0	-	-	-		v				
	9	-	-	-	-	-	-	-	-	0	-	5	5	0									
		<u> </u>										•••	• •	~									

Table 2-8. Percent Transverse Elongation and Compression, Sheets A, B, and C

The percent of elongation for the centerline of each blank is graphically represented in Figure 2-21 to show the line of greatest elongation in each blank. Figure 2-21 also includes the average elongation for the weld-lands of each station. Limited test data indicate typical elongations of 18.5% to 21% are available for mill supplied 2219-T37 aluminum, but the available uniform elongation is normally 60% of the total elongation, based on Convair's experience. Thus 11.1% to 12.6% maximum elongation is desired. For this reason a limit of 11% elongation is shown on Figure 2-21. Blank B having a maximum elongation at station H of 11.5% exceeds the limit desired.

A minimum elongation of 1% is desired in all edge or weld-land elements to prevent springback, thus ensuring a good set in these elements (see 1% limit line in Figure 2-21). The Blank C falling below the 1% minimum elongation limit in the edge elements, was caused by the termination of the stretch forming program for this blank. Blank C should have been stretched further to set the edge elements, while blanks A and B were satisfactory.

2.10 PACKAGING AND SHIPPING.

The three gores plus all cutoff material from the gore blanks were packaged in a single wooden box for shipment by truck to NASA/MSFC, Alabama. The box was custom made with two contour-matching vertical supports proportionally located on the box base to support the full width of the compound contoured gores. The gores were installed in the box with the concave sides down. The ends of the gores were fitted against blocks on the box to prevent shifting. The parts were separated with cushioning material for protection, and secured to the base by steel strapping over the vertical support locations. Parent material that was trimmed off of the edges of each blank before forming was strapped to the base under the parts. Each piece of this trim material and each gore was identified with its corresponding blank number for identification by both impression stamping and marking pen. The approximate dimensions of the wooden shipping box were 99.06 cm (39 in.) high by 96.52 cm (38 in.) wide by 365.76 cm (144 in.) long. The box was shipped to MSFC via Leeway Freight Lines on 11 June 1974.

2.11 CONCLUSIONS

The conclusions reached are as follows:

- 1. The successful room temperature STFM of the three 2219-T37 one-third-scale gores show that the gores of a 12-gore configuration blukhead can be fabricated using this process.
- 2. If the stretch press jaws could have been rotated to a greater vertical angle, it is believed that the gores would have been formed completely to the die at the base end without difficulty, and the amount of stretch could possibly be reduced.
- 3. It may be possible to stretch form gores to an 11- or 10-gore bulkhead configuration if the amount of stretch can be reduced; however, available uniform material elongation is the governing factor. An 11- or 10-gore bulkhead configuration could result in a much higher scrap rate (> 5%).

SECTION 3

PHASE II - PRODUCTION DIE DESIGN, TOOLING COST STUDY, AND PRODUCTION COST STUDY

3.1 GENERAL INFORMATION

The designs and costs in Phase II were to be compiled, if possible, for all of the following configurations:

- 1. Production of LH₂ Tank Dome gores per MMC Dwg. 82600202000 (200 in. cap, 12 gores).
- 2. Production of LH₂ Tank Dome gores per MMC Dwg. 82600202001 (140 in. cap, 12 gores).
- 3. Production of LO₂ Tank Dome gores, no MMC Dwg. available (200 in. cap, 8 gores).
- 4. Production of LO₂ Tank Dome gores per MMC Dwg. 82600203500 (140 in. cap, 8 gores).
- 5. Production of 12 gores for MMC LH_2 Dome Configuration (one-half an ellipsoid with major and minor axes of 165.1 and 123.825 in. respectively) but with the optimum size of cap based on GD/C studies.
- 6. Production of 8 gores for the MMC LO₂ Dome Configuration (one-half an ellipsoid with major and minor axes of 165.1 and 123.825 in. respectively) but with optimum size cap based on GD/C studies.
- 7. Production of 12 gores for the MMC LO_2 Dome Configuration (one-half an ellipsoid with major and minor axes of 165.1 and 123.825 in. respectively) but with optimum size cap based on GD/C studies.
- 8. Production of the least number of gores for the MMC LH_2 Tank Dome with the 200 in. diameter cap that can be made with existing stretch presses in the country and the material sizes available. See MMC Dwg. 82600202000.
- 9. Production of the least number of gores for the MMC LH_2 Tank Dome with the 140 in. diameter cap that can be made with existing stretch presses in the Country and the material sizes available. See MMC Dwg. 82600202001.
- 10. Production of the least number of gores for the MMC LO_2 Tank Dome with the 200 in. diameter cap that can be made with existing stretch presses in the Country and the material sizes available. See MMC Dwg. 82600203500.
- 11. Production of the least number of gores for the MMC LO_2 Tank Dome with the 140 in. diameter cap that can be made with existing stretch presses in the Country and the material sizes available. See MMC Dwg. 82600203500.

- 12. Production of the least number of gores for the MMC LH_2 Dome configuration and the optimum size cap based on GD/C studies.
- 13. Production of the least number of gores for the MMC LO₂ Dome configuration and the optimum size cap based on GD/C studies.

This list of 13 configurations was reduced to seven configurations because: a) previous experience showed that the minimum number of gores per bulkhead that can be formed is 10, and, b) duplication of configurations occurred after establishing the least number of gores for the desired polar cap diameters. The seven configurations and their numerical identification which will be used throughout the Phase II study are as follows:

Configuration 1

LH₂ tank bulkhead gores 200-in.-diameter cap, 12 gores per bulkhead (NASA 1) Ref. Dwg: MMC82600202000

Configuration 2

LH₂ tank bulkhead gores 140-in.-diameter cap, 12 gores per bulkhead (NASA 2) Ref. Dwg: MMC 82600202001

Configuration 3

LH₂ tank bulkhead gores 120-in.-diameter cap, 12 gores per bulkhead (NASA 5) Ref. Dwg: MMC82600202001

Configuration 4

LO₂ tank bulkhead gores

120-in.-diameter cap, 12 gores per bulkhead (NASA 7) Ref. Dwg: MMC82600203500

Configuration 5

LH₂ tank bulkhead gores 200-in.-diameter cap, 10 gores per bulkhead (NASA 8) Ref. Dwg: MMC82600202000

Configuration 6

LO₂ tank bulkhead gores 200-in.-diameter cap, 10 gores per bulkhead (NASA 10) Ref. Dwg: MMC82600203500

Configuration 7

LO₂ tank bulkhead gores 140-in.-diameter cap, 12 gores per bulkhead (NASA 11) Ref. Dwg: MMC82600203500

3.2 STRETCH FORM DIE DESIGN

A preliminary design for a typical production stretch form die capable of forming two parts simultaneous ly (Siamese forming) was prepared.

The preliminary STFM die design and die support structure design is shown in Figure 3-1 (Drawing MRD C00191802). The overall gore die dimensions are based on a 12-gore LO₂ or LH₂ bulkhead configuration with a 304.8 cm (120-in.) diameter polar cap. This configuration requires the largest gore die. The end of part (EOP) locations for 355.6 cm (140-in.) diameter and 508 cm (200-in.) diameter polar cap sizes are also shown on the die drawing for reference.

The Siamese method of stretch forming was chosen because previous cost studies at Convair showed a 15 to 20% material cost savings as compared to single gore stretch forming. The Siamese method is cheaper not only because of reductions in the amount of aluminum scrap cutoff material, but also because of reduced machining and setup time, stretch forming and setup time, and handling.

The Siamese stretch form die design consists of two separate stretch form dies mounted on a tall substructure. The substructure, of 15.24-cm (6-in.) square steel tubing, would be fabricated as three separate weldments and bolted together. Each section would weigh less than 4535.9 kg (5 tons) so that an existing 4535.9-kg (5-ton) overhead crane could be used to assemble the substructure on the stretch press bed. The jaws of the 453,592.3 kg (500-ton) Convair stretch press can presently be raised to only a 45-degree angle, but the press jaws can be readily modified to permit raising a full 90-degree angle as shown in the tool drawing.

The design concept of the two stretch form dies is based on a low cost design recently developed at Convair and proven on large production DC-10 skin stretch form dies. This method of fabricating large stretch form dies is believed to be the lowest cost method in use in the industry today. The die fabrication method consists of the follow-ing steps:

- 1. Fabricate a female plaster master of the desired gore shape.
- 2. Layup a 1.27 cm (1/2-in.) thick high-dens ty fiberglass die face within the plaster master.
- 3. Fabricate a weldment structure of I-beams as shown, and install in position above the fiberglass die face.
- 4. Fill the die cavity with a commercial lightweight aerated concrete and allow to harden for 30 days to achieve maximum concrete strength. A lightweight concrete is used to reduce the die weight to within the capacity of existing handling equipment. This concrete can be formulated with a density as low as 72. 1305 gm/m³ (45 lb/ft³), as compared to the normal concrete density of approximately 232. 4205 gm/m³ (145 lb/ft³). Although the compression strength of the 72. 1305 gm/m³

Figure 3-1. Siamese Stretch Form Preliminary Design for Elliptical Bulkhead Gore

 (45 lb/ft^3) concrete is less than normal concrete, this concrete has proven satisfactory in large STFM dies forming aluminum parts on a production basis as large and as thick as the subject gores.

The completed STFM dies, weighing approximately 4445.2 kg (4.9 tons) each, will then be installed on the substructure using the existing 4535.9 kg (5-ton) overhead hoist and bolted in position ready for stretch forming.

A discrepancy exists between the supplied Martin Co. drawings and the NASA RFQ with respect to the contour dimensions of the LO₂ and LH₂ bulkheads. The drawings show that the inside dimensions, half ellipsoids having inside major and minor axes of 419.05 cm (165.1 in.) and 314.51 cm (123.825 in.) respectively, of the LO₂ and LH₂ bulkheads are the same, but, the NASA contract Scope of Work states that the outside dimensions of the two bulkheads are the same. If the NASA Scope of Work statement is correct, then a removable die cover sheet will be stretch formed of approximate 0.508 cm (0.20 in.) thick aluminum to shim the die surface out to the required mold line contour for the stretch forming of LH₂ tank gores. This cover sheet cost is included in the Tooling Cost Study (see Volume II - Cost Study).

3.3 TOOLING COST STUDY

The tooling costs for the seven different configurations is discussed in Volume II - Cost Study.

3.4 PRODUCTION FLOW CHART

The production flow chart showing the major operations and tools in a proposed manufacturing plan for any of the seven bulkhead gore configurations is shown in Figure 3-2. A simplified version of the production flow chart is shown in Figure 3-3.

The estimated average flow hours for each operation are shown on these charts. The production rates at each station can be established from the fabrication rate and lot plan shown in Figure 3-4.

3.5 PRODUCTION COST STUDY

The cost studies for bulkhead gores manufacturing are contained in Volume II of this report.

Page intentionally left blank

Figure 3-3. Simplified Production Flow Chart

SHUTTLE EXTERNAL TANK DOME GORES FABRICATION RATE & LOT PLAN CM 74-2002A

	PROGRAM YEAR													
LOS TANK (10 CORE DI AN)	1	2	3	4	5	6	7	8	9	10	11	12	13	
DELIVERY REQUIREMENTS	20	10	#0	150	240	320	400	600	600	600	600	670	240	
CUM	20	50	130	280	520	840	1240	1840	2440	3040	3640	4240	4480	
MANUFACTURING RATE	10 Kg	3 <u>0</u> 30	2 2 2 0	1 0 30 50 60	• • • •	60 80 80	**********	¹⁵ 0 ¹ 5,	لي لئ لي لئ	50 Ju 15 Ju	14, 14, 14, 14, 14, 14, 14, 14, 14, 14,	الج لع لع اح	15 B	
CUM COMPLETIONS	20	60	130	100	540	170	1360	1860	2460	3060	3660	6260	4.18	
LOTS PER YEAR	2	2	•	5		- 11	13	20	20	20	20	20		
CUM LOTS TOTAL	. 2	•		13	21		45	63	85	105	174	145	163	
LOT SIZE	10	20	3-20	10	30	30	10	30	10	30	30	10	4-19	
LH2 TANK (10 GORE PLAN)	40		140	200	480	640								
CUM	40	100	260	560	1040	1650	2480	1200	4840	1200	1200	1200	450	
MANUEL OFFICERATE														
CHM COMPLETIONS	0" 0" 40	סד טיי	*0 *0 *0 *0	*0 *0 *0 *3 ₀	120 120 120 120	³ 20 ¹ 80 ¹ 80 ¹ 80	الاس الاس كل	100 400 400 400	to to to to	300 300 300 400	10 10 10 10	100 00 00 00	300 140	
				600	1080	1740	2520	3720	4920	6120	7320	8520	894	
LOTS PER YEAR	2	, 2	4	1 1	•	11	13	20	20	20	20	20	•	
COM LOIS TOTAL	Ŧ	4	8 3-40	53	21	.32	45	63	45	105	125	145	151	
LOT SIZE	20	40	1-60	. 60	60	60	60	60	60	60	60	± 09	2.40	
DELIVERY REMID/FMENTS	24	36	96	180	201	384	480	720	720	710			214	
CUM		60	154	336	624	1005	1568	2208	2924	3648	4368	5081	5176	
MANUFACTURING RATE	'z '2	2 2	24 24 24 36	36 36 36 72	<i>1</i> , <i>1</i> , <i>1</i> , <i>1</i> ,	7 40 108 104	LOS LOS -08 144	380 380 960 ,80	100 180 180 160	1 *** *** ****************************	40 40 40 40	0 0 0	"•6 •4	
CUM COMPLETIONS	24	73	180	360	648	1044	1512	2232	2952	1672	4392	\$112	517	
LOTS PER YEAR	2	2	• ·	1	ŧ	i 1	0	20	20	20	20	20	•	
CUM LOTS TOTAL	1	4		13	21	12	45	65	85	105	125	145	153	
LOT SIZE	12	24	1.11	36	36	36	36	36	36	36	36	36	9:31	
HI2 TANG H2 GORE PLAN)		72	192	160	\$74		010			1440				
DELIVERY REQUIREMENTS	4	120	312	472	1248	2016	2976	4416	5856	7296	1440	1440	5/4	
MANUFACTURING DATE	. 2, 2,		4 4 4 7	2 2 7 6	la la la la	14. 2. 2. 2.	2. 2. 2						1. 1	
CUM COMPLETIONS		14	1 1 1 1		N 74 74 74	** **6 **6 **6	-16 -16 -16 -19	0,0,0,0,0,0	0°° 0° 0° 0°	*************	**a **0 **0 **0	³ 5g ³ 50 ³ 50 ³ 50	¹⁶ 0 ¹⁶ 8	
					•670	4080	3024		5904	7344	8714	10734	1975.	
LOTS PER YEAR	1	8	•			1 1	. 13	20	20	20	20	20		
CUM LOTS TOTAL	1	4	•	13	21	32	45	65	85	105	125	145	153	
LOT SIZE	24	4	<u></u>	72	72	72	72	72	72	72	72	72	1:73	
	1	2	3	4	5	6	<u>7</u>	8 FAD	9	10	11	12	13	
		•				P		<u>unn</u>		-				

Figure 3-4. Production Rate and Lot Plan

3-10

13 MAY 1974

APPENDIX COLD STRETCH FORMED BULKHEAD GORE DRAWING

COLD STRETCH FORMED BULKHEAD GORE

A-1