422 research outputs found
Memory-induced anomalous dynamics: emergence of diffusion, subdiffusion, and superdiffusion from a single random walk model
We present a random walk model that exhibits asymptotic subdiffusive,
diffusive, and superdiffusive behavior in different parameter regimes. This
appears to be the first instance of a single random walk model leading to all
three forms of behavior by simply changing parameter values. Furthermore, the
model offers the great advantage of analytic tractability. Our model is
non-Markovian in that the next jump of the walker is (probabilistically)
determined by the history of past jumps. It also has elements of intermittency
in that one possibility at each step is that the walker does not move at all.
This rich encompassing scenario arising from a single model provides useful
insights into the source of different types of asymptotic behavior
Subordination Pathways to Fractional Diffusion
The uncoupled Continuous Time Random Walk (CTRW) in one space-dimension and
under power law regime is splitted into three distinct random walks: (rw_1), a
random walk along the line of natural time, happening in operational time;
(rw_2), a random walk along the line of space, happening in operational
time;(rw_3), the inversion of (rw_1), namely a random walk along the line of
operational time, happening in natural time. Via the general integral equation
of CTRW and appropriate rescaling, the transition to the diffusion limit is
carried out for each of these three random walks. Combining the limits of
(rw_1) and (rw_2) we get the method of parametric subordination for generating
particle paths, whereas combination of (rw_2) and (rw_3) yields the
subordination integral for the sojourn probability density in space-time
fractional diffusion.Comment: 20 pages, 4 figure
(2+1)-Dimensional Quantum Gravity as the Continuum Limit of Causal Dynamical Triangulations
We perform a non-perturbative sum over geometries in a (2+1)-dimensional
quantum gravity model given in terms of Causal Dynamical Triangulations.
Inspired by the concept of triangulations of product type introduced
previously, we impose an additional notion of order on the discrete, causal
geometries. This simplifies the combinatorial problem of counting geometries
just enough to enable us to calculate the transfer matrix between boundary
states labelled by the area of the spatial universe, as well as the
corresponding quantum Hamiltonian of the continuum theory. This is the first
time in dimension larger than two that a Hamiltonian has been derived from such
a model by mainly analytical means, and opens the way for a better
understanding of scaling and renormalization issues.Comment: 38 pages, 13 figure
Creep, Relaxation and Viscosity Properties for Basic Fractional Models in Rheology
The purpose of this paper is twofold: from one side we provide a general
survey to the viscoelastic models constructed via fractional calculus and from
the other side we intend to analyze the basic fractional models as far as their
creep, relaxation and viscosity properties are considered. The basic models are
those that generalize via derivatives of fractional order the classical
mechanical models characterized by two, three and four parameters, that we
refer to as Kelvin-Voigt, Maxwell, Zener, anti-Zener and Burgers. For each
fractional model we provide plots of the creep compliance, relaxation modulus
and effective viscosity in non dimensional form in terms of a suitable time
scale for different values of the order of fractional derivative. We also
discuss the role of the order of fractional derivative in modifying the
properties of the classical models.Comment: 41 pages, 8 figure
L\'evy-Schr\"odinger wave packets
We analyze the time--dependent solutions of the pseudo--differential
L\'evy--Schr\"odinger wave equation in the free case, and we compare them with
the associated L\'evy processes. We list the principal laws used to describe
the time evolutions of both the L\'evy process densities, and the
L\'evy--Schr\"odinger wave packets. To have self--adjoint generators and
unitary evolutions we will consider only absolutely continuous, infinitely
divisible L\'evy noises with laws symmetric under change of sign of the
independent variable. We then show several examples of the characteristic
behavior of the L\'evy--Schr\"odinger wave packets, and in particular of the
bi-modality arising in their evolutions: a feature at variance with the typical
diffusive uni--modality of both the L\'evy process densities, and the usual
Schr\"odinger wave functions.Comment: 41 pages, 13 figures; paper substantially shortened, while keeping
intact examples and results; changed format from "report" to "article";
eliminated Appendices B, C, F (old names); shifted Chapters 4 and 5 (old
numbers) from text to Appendices C, D (new names); introduced connection
between Relativistic q.m. laws and Generalized Hyperbolic law
An Integro-Differential Equation of the Fractional Form: Cauchy Problem and Solution
Producción CientíficaWe solve the Cauchy problem defined by the fractional partial differential
equation [∂tt − κD]u = 0, with D the pseudo-differential Riesz operator of first
order, and certain initial conditions. The
solution of the Cauchy problem resulting from the substitution of the Gaussian pulse
u(x, 0) by the Dirac delta distribution ϕ(x) = μδ(x) is obtained as corollary.MINECO grant MTM2014-57129-C2-1-P
Stochastic Calculus for a Time-changed Semimartingale and the Associated Stochastic Differential Equations
It is shown that under a certain condition on a semimartingale and a
time-change, any stochastic integral driven by the time-changed semimartingale
is a time-changed stochastic integral driven by the original semimartingale. As
a direct consequence, a specialized form of the Ito formula is derived. When a
standard Brownian motion is the original semimartingale, classical Ito
stochastic differential equations driven by the Brownian motion with drift
extend to a larger class of stochastic differential equations involving a
time-change with continuous paths. A form of the general solution of linear
equations in this new class is established, followed by consideration of some
examples analogous to the classical equations. Through these examples, each
coefficient of the stochastic differential equations in the new class is given
meaning. The new feature is the coexistence of a usual drift term along with a
term related to the time-change.Comment: 27 pages; typos correcte
The target problem with evanescent subdiffusive traps
We calculate the survival probability of a stationary target in one dimension
surrounded by diffusive or subdiffusive traps of time-dependent density. The
survival probability of a target in the presence of traps of constant density
is known to go to zero as a stretched exponential whose specific power is
determined by the exponent that characterizes the motion of the traps. A
density of traps that grows in time always leads to an asymptotically vanishing
survival probability. Trap evanescence leads to a survival probability of the
target that may be go to zero or to a finite value indicating a probability of
eternal survival, depending on the way in which the traps disappear with time
Distributed Order Derivatives and Relaxation Patterns
We consider equations of the form , ,
where , is a distributed order derivative, that is the
Caputo-Dzhrbashyan fractional derivative of order , integrated in
with respect to a positive measure . Such equations are
used for modeling anomalous, non-exponential relaxation processes. In this work
we study asymptotic behavior of solutions of the above equation, depending on
properties of the measure
Fractional diffusion modeling of ion channel gating
An anomalous diffusion model for ion channel gating is put forward. This
scheme is able to describe non-exponential, power-law like distributions of
residence time intervals in several types of ion channels. Our method presents
a generalization of the discrete diffusion model by Millhauser, Salpeter and
Oswald [Proc. Natl. Acad. Sci. USA 85, 1503 (1988)] to the case of a
continuous, anomalous slow conformational diffusion. The corresponding
generalization is derived from a continuous time random walk composed of
nearest neighbor jumps which in the scaling limit results in a fractional
diffusion equation. The studied model contains three parameters only: the mean
residence time, a characteristic time of conformational diffusion, and the
index of subdiffusion. A tractable analytical expression for the characteristic
function of the residence time distribution is obtained. In the limiting case
of normal diffusion, our prior findings [Proc. Natl. Acad. Sci. USA 99, 3552
(2002)] are reproduced. Depending on the chosen parameters, the fractional
diffusion model exhibits a very rich behavior of the residence time
distribution with different characteristic time-regimes. Moreover, the
corresponding autocorrelation function of conductance fluctuations displays
nontrivial features. Our theoretical model is in good agreement with
experimental data for large conductance potassium ion channels
- …
