It is shown that under a certain condition on a semimartingale and a
time-change, any stochastic integral driven by the time-changed semimartingale
is a time-changed stochastic integral driven by the original semimartingale. As
a direct consequence, a specialized form of the Ito formula is derived. When a
standard Brownian motion is the original semimartingale, classical Ito
stochastic differential equations driven by the Brownian motion with drift
extend to a larger class of stochastic differential equations involving a
time-change with continuous paths. A form of the general solution of linear
equations in this new class is established, followed by consideration of some
examples analogous to the classical equations. Through these examples, each
coefficient of the stochastic differential equations in the new class is given
meaning. The new feature is the coexistence of a usual drift term along with a
term related to the time-change.Comment: 27 pages; typos correcte