2,873 research outputs found

    Search for the Tunguska event in the Antarctic snow

    Get PDF
    The Tunguska explosion in 1908 is supposed to have been produced by the impact of a small celestial body. The absence of any identifiable crater together with the huge energy released by the event suggest that the impactor exploded in midair and that its material was widely spread over the Earth. The short term contribution of such exceptional events to the total accretion rate of extraterrestrial material by the Earth could be significant. Samples were chosen in a core electromechanically drilled in 1984 near South Pole Station. There, the low temperatures, preventing melting all year long, and the nearly regular snow fall rate provide good conditions for a reliable continuous record of any infalling material. In many samples Ir was below the detection limit of the instrumentation. The iridium infall averaged over 45 samples is given. In a few samples the iridium content is significantly higher than the average: the frequency and amplitude of such fluctuations can be explained by the presence on some filters of finite size cosmic particles. No significant systematic increase above the average level is observed in the part of the core corresponding to the Tunguska event. The two major results of this study are: (1) The presence of Tunguska explosion debris in the Antarctic snow is not confirmed; and (2) The estimate of the average iridium infall, is an order of magnitude lower than the Ganapathy's background but is close to the values measured in Antarctic snow and atmospheric samples by Takahashi et al. The results are also consistent with the flux of micrometeoroids deduced from optical and radar observations or derived from the study of Greenland cosmic dust collection but are lower than the flux at mid-latitude measured in paleocene-oligocene sediments from the central part of the Pacific Ocean

    Charter School Funding: Inequity in the City

    Get PDF
    Public charter schools are a growing part of K-12 education. Charter schools are public schools that are granted operational autonomy by their authorizing agency in return for a commitment to achieve specific performance goals. Like traditional public schools, charter schools are free to students and overseen by the state. Unlike traditional public schools, however, most charters are open to all students who wish to apply, regardless of where they live. If a charter school is over-subscribed, usually random lotteries determine which students will be admitted. Most charter schools are independent of the traditional public school district in which they operate

    Prediction Skill of U.S. Flash Droughts in Subseasonal Experiment (SubX) Model Hindcasts

    Get PDF
    Droughts that establish themselves over a short period of time (weeks to a few months), referred to as flash droughts, can have devastating impacts on agriculture, water resources, and ecosystems. The ability to predict such droughts in advance would greatly enhance our preparation for them and potentially reduce their impacts. The sub-seasonal time scale at which flash droughts occur emphasizes the importance of producing forecasts at weekly or finer intervals that extend beyond the numerical weather prediction time frame. Here we assess the ability of eight global forecast systems, each participating in the Sub-seasonal Experiment project (SubX), to predict key features associated with rapidly developing droughts over the United States during the last two decades. MERRA2 reanalysis is used as observations. Prediction skill for temperature and precipitation anomalies during these events is limited to the first 1-2 weeks after initialization for most hindcasts. However, there are some hindcasts in which large anomalies are well predicted 3-4 weeks or more in advance. The physical mechanisms that are key to the development of surface anomalies, including quasi-stationary atmospheric waves, were also evaluated. Most hindcasts were unable to capture the development or progression of such drought-inducing circulation features more than 1-2 weeks in advance

    Heated nuclear matter, condensation phenomena and the hadronic equation of state

    Full text link
    The thermodynamic properties of heated nuclear matter are explored using an exactly solvable canonical ensemble model. This model reduces to the results of an ideal Fermi gas at low temperatures. At higher temperatures, the fragmentation of the nuclear matter into clusters of nucleons leads to features that resemble a Bose gas. Some parallels of this model with the phenomena of Bose condensation and with percolation phenomena are discussed. A simple expression for the hadronic equation of state is obtained from the model.Comment: 12 pages, revtex, 1 ps file appended (figure 1

    Modifier Genes as Therapeutics: The Nuclear Hormone Receptor Rev Erb Alpha (Nr1d1) Rescues Nr2e3 Associated Retinal Disease

    Get PDF
    Nuclear hormone receptors play a major role in many important biological processes. Most nuclear hormone receptors are ubiquitously expressed and regulate processes such as metabolism, circadian function, and development. They function in these processes to maintain homeostasis through modulation of transcriptional gene networks. In this study we evaluate the effectiveness of a nuclear hormone receptor gene to modulate retinal degeneration and restore the integrity of the retina. Currently, there are no effective treatment options for retinal degenerative diseases leading to progressive and irreversible blindness. In this study we demonstrate that the nuclear hormone receptor gene Nr1d1 (Rev-Erba) rescues Nr2e3- associated retinal degeneration in the rd7 mouse, which lacks a functional Nr2e3 gene. Mutations in human NR2E3 are associated with several retinal degenerations including enhanced S cone syndrome and retinitis pigmentosa. The rd7 mouse, lacking Nr2e3, exhibits an increase in S cones and slow, progressive retinal degeneration. A traditional genetic mapping approach previously identified candidate modifier loci. Here, we demonstrate that in vivo delivery of the candidate modifier gene, Nr1d1 rescues Nr2e3 associated retinal degeneration. We observed clinical, histological, functional, and molecular restoration of the rd7 retina. Furthermore, we demonstrate that the mechanism of rescue at the molecular and functional level is through the re-regulation of key genes within the Nr2e3-directed transcriptional network. Together, these findings reveal the potency of nuclear receptors as modulators of disease and specifically of NR1D1 as a novel therapeutic for retinal degenerations

    Quasi-gaussian fixed points and factorial cumulants in nuclear multifragmentation

    Get PDF
    We re-analyze the conditions for the phenomenon of intermittency (self-similar fluctuations) to occur in models of multifragmentation. Analyzing two different mechanisms, the bond-percolation and the ERW (Elattari, Richert and Wagner) statistical fragmentation models, we point out a common quasi-gaussian shape of the total multiplicity distribution in the critical range. The fixed-point property is also observed for the multiplicity of the second bin. Fluctuations are studied using scaled factorial cumulants instead of scaled factorial moments. The second-order cumulant displays the intermittency signal while higher order cumulants are equal to zero, revealing a large information redundancy in scaled factorial moments. A practical criterion is proposed to identify the gaussian feature of light-fragment production, distinguishing between a self-similarity mechanism (ERW) and the superposition of independent sources (percolation).Comment: 20 pages, uuencoded .tex file including 16 figure

    Impaired IFN-γ production and proliferation of NK cells in Multiple Sclerosis

    Get PDF
    NK cells are multicompetent lymphocytes of the innate immune system with a central role in host defense and immune regulation. Studies in experimental animal models of multiple sclerosis (MS) provided evidence for both pathologic and protective effects of NK cells. Humans harbor two functionally distinct NK-cell subsets exerting either predominantly cytotoxic (CD56dimCD16+) or immunoregulatory (CD56brightCD16−) functions. We analyzed these two subsets and their functions in the peripheral blood of untreated patients with relapsing-remitting MS compared with healthy blood donors. While ex vivo frequencies of CD56brightCD16− and CD56dimCD16+ NK cells were similar in patients and controls, we found that cytokine-driven in vitro accumulation and IFN-γ production of CD56brightCD16− NK cells but not of their CD56dimCD16+ counterparts were substantially diminished in MS. Impaired expansion of CD56brightCD16− NK cells was cell intrinsic because the observed effects could be reproduced with purified NK cells in an independent cohort of patients and controls. In contrast, cytolytic NK-cell activity toward the human erythromyeloblastoid leukemia cell line K562, the allogeneic CD4+ T cell line CEM and allogeneic primary CD4+ T-cell blasts was unchanged. Thus, characteristic functions of CD56brightCD16− NK cells, namely cytokine-induced NK cell expansion and IFN-γ production, are compromised in the NK cell compartment of MS patient

    Persistence, extinction and spatio-temporal synchronization of SIRS cellular automata models

    Full text link
    Spatially explicit models have been widely used in today's mathematical ecology and epidemiology to study persistence and extinction of populations as well as their spatial patterns. Here we extend the earlier work--static dispersal between neighbouring individuals to mobility of individuals as well as multi-patches environment. As is commonly found, the basic reproductive ratio is maximized for the evolutionary stable strategy (ESS) on diseases' persistence in mean-field theory. This has important implications, as it implies that for a wide range of parameters that infection rate will tend maximum. This is opposite with present results obtained in spatial explicit models that infection rate is limited by upper bound. We observe the emergence of trade-offs of extinction and persistence on the parameters of the infection period and infection rate and show the extinction time having a linear relationship with respect to system size. We further find that the higher mobility can pronouncedly promote the persistence of spread of epidemics, i.e., the phase transition occurs from extinction domain to persistence domain, and the spirals' wavelength increases as the mobility increasing and ultimately, it will saturate at a certain value. Furthermore, for multi-patches case, we find that the lower coupling strength leads to anti-phase oscillation of infected fraction, while higher coupling strength corresponds to in-phase oscillation.Comment: 12page

    Fish Cohort Dynamics: Application of Complementary Modeling Approaches

    Get PDF
    The recruitment to the adult stock of a fish population is a function of both environmental conditions and the dynamics of juvenile fish cohorts. These dynamics can be quite complicated and involve the size structure of the cohort. Two types of models, i-state distribution models (e.g., partial differential equations) and i-state configuration models (computer simulation models following many individuals simultaneously), have been developed to study this type of question. However, these two model types have not to our knowledge previously been compared in detail. Analytical solutions are obtained for three partial differential equation models of early life-history fish cohorts. Equivalent individual-by-individual computer simulation models are also used. These two approaches can produce similar results, which suggests that one may be able to use the approaches interchangeably under many circumstances. Simple uncorrected stochasticity in daily growth is added to the individual-by-individual models, and it is shown that this produces no significant difference from purely deterministic situations. However, when the stochasticity was temporally correlated such that a fish growing faster than the mean 1 d has a tendency to grow faster than the mean the next day, there can be great differences in the outcomes of the simulations.This research was sponsored in part by the Electric Power Research Institute under contract no. RP2932-2 (DOE no. ERD-87-672) with the U.S. Department of Energy under contract no. DE-AC05-84OR21400 with Martin Marietta Energy Systems, and in part by grant no. NAI6RG0492-01 from the Coastal Ocean Program of the National Oceanic and Atmospheric Administration (NOAA) to the University of North Carolina Sea Grant College Program
    corecore