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MODELING APPROACHES 
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Abstract. 
The recruitment to the adult stock of a fish population is a function of both environmental conditions and 

the dynamics of juvenile fish cohorts. These dynamics can be quite complicated and involve the size structure of the 
cohort. Two types of models, i-state distribution models (e.g., partial differential equations) and i-state configuration 
models (computer simulation models following many individuals simultaneously), have been developed to study 
this type of question. However, these two model types have not to our knowledge previously been compared in 
detail. Analytical solutions are obtained for three partial differential equation models of early life-history fish 
cohorts. Equivalent individual-by-individual computer simulation models are also used. These two approaches can 
produce similar results, which suggests that one may be able to use the approaches interchangeably under many 
circumstances. Simple uncorrected stochasticity in daily growth is added to the individual-by-individual models, and 
it is shown that this produces no significant difference from purely deterministic situations. However, when the 
stochasticity was temporally correlated such that a fish growing faster than the mean 1 d has a tendency to grow 
faster than the mean the next day, there can be great differences in the outcomes of the simulations. 

The great majority of models of ecological populations describe populations as 
homogeneous collections of organisms. However, to an increasing degree, ecologists have 
become aware that the internal age and size structures of populations can have a decisive 
influence on the population dynamics (Ebenman and Persson 1988). Size structure may be 
particularly important in populations in which growth is fairly plastic and feeding and 
vulnerability to predation depend on size. The first factor, plasticity in growth, leads to the 
potential for a wide spectrum of organism sizes in the population, even within cohorts of 
individuals of the same age. The second factor, size dependence of feeding and vulnerability, 
means that members of an age-class cohort that have different sizes will have different 
probabilities of success in surviving and reproducing. 

These factors affect the dynamics of a population cohort and thus have many 
ramifications, both theoretical and practical, in ecology. On the theoretical side, there are 
questions of appropriate parental strategies (e.g., size of eggs, early parental care) and individual 
growth strategies in the face of environments with various size-dependent food availabilities and 
risks of predation. On the practical side, the recruitment of juvenile fish to the adult classes in 
commercial fish species is extremely important but is not well understood. It is quite possible 
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that the dynamics leading to recruitment involve size structure in important ways. 
Because of the apparent importance of size structure in the dynamics of many 

populations, models that consider size structure explicitly have been developed. Models that take 
into account the states of individual organisms in a population have been called i-state models, 
differentiated from p-state models, which have state variables representing the whole population 
(see Metz and Diekmann 1986). The i-states can be any characteristics of individuals—their 
sizes, ages, or energy reserves, for example. Caswell and John (1992) further classify two types 
of i-state models: distribution models and configuration models. Distribution models assume that 
a given characteristic that varies in a population forms a continuous distribution, rather like the 
continuous distribution of velocities of atoms in a gas that is usually assumed in the kinetic 
theory of gases. Distribution models for size-structured populations are most frequently partial 
differential equations, such as the McKendrick-von Foerster equation (see, e.g., Sinko and 
Streifer 1967; Nisbet and Gurney 1982). 

The i-state configuration models do not assume a continuous distribution of 
characteristics, such as sizes, but are computer models in which many different individuals, each 
with its own characteristics, are simulated simultaneously. Thus, the distribution of sizes that 
occurs in such models is the sum of the simulation of many individuals. 

Both i-state distribution and i-state configuration models have been used extensively to 
deal with problems involving the size structure of populations. The advantages and 
disadvantages of each approach have been compared. For example, several of the factors 
involved in choosing which approach to use have been discussed (DeAngelis and Rose 1992). 
These factors include the size of the population being modeled, the amount of stochasticity 
expected in the population, the degree to which the population is well mixed versus stratified, 
and the complexity of actions by individuals. Large population size, little stochasticity, good 
mixing, and fairly simple individual behaviors all increase the ease of formulation and accuracy 
of a partial differential equation model description. Conversely, small population size, high 
stochasticity, poor mixing, and complex individual behaviors tend to make partial differential 
equation models poor representations of populations. 

Despite such discussions of relative advantages, little or nothing has been done actually 
to compare in detail the predictions of the two different types of models. In this article we 
compare precise analytical solutions of partial differential equation models of size-structured 
populations (one type of i-state distribution model) with i-state configuration models, in this case 
Monte Carlo computer simulation models that follow thousands of individuals of a population 
(the term Monte Carlo refers to the use of pseudorandom number generators in such models to 
simulate the stochasticity of individuals). 

Our article has two basic goals. The first goal is to see just how well the computer 
simulation configuration models do when they are used to describe problems that can be 
formulated as analytically solvable partial differential equations. If they do well without one 
having to use an impractically large number of simulated individuals, this would suggest that the 
configuration approach and the partial differential equation approach may be validly substituted 
for each other when it is more convenient to use one or the other. The second goal is to see what 
happens when we add complexities to these simple population systems that make them less 
amenable to formulation as partial differential equations but that can be easily handled by means 
of computer simulations of many individuals. A crucial question is whether some of these 
complexities, which may reflect what can happen in real populations, have major effects on the 
dynamics. 



 

 

 
 

 

 
 

 

 

 

 
 
 

  
 

 
 

 

 
 

  
 

 
 
 

  
  

This article deals only with population cohorts, although the results have implications for 
the more complex problems of the dynamics of total populations and communities. 

THE MODELS 

In an attempt to deal with size-structured populations quantitatively, one approach has 
been to adapt the Leslie matrix approach normally used to describe age-structured populations 
(Caswell 1989). Instead of probabilities of transition from one age class to another, as in the age-
structured Leslie matrix models, in the size-structured models there are probabilities for 
transition from a given size class to another. Another approach is the McKendrick-von Foerster 
model, in which size is a continuous variable and the population is described by a partial 
differential equation for the continuous variable, f(S, t), the density of organisms (number per 
unit size interval) at size S at a given time (Van Sickle 1977; DeAngelis and Mattice 1980; 
DeAngelis et al. 1980; Wismer et al. 1985; Metz and Diekmann 1986; DeAngelis and Huston 
1987). 

The Leslie matrix approach is generally used to follow a whole population on yearly time 
steps, whereas we will be considering a population cohort during a time period shorter than a 
year. The relevant analytical model of a cohort is the McKendrick-von Foerster model, and the 
results of this model will be compared with those of a simulation model. 

The formulation of a McKendrick-von Foerster model is described in detail by Metz et al. 
(1988). To model a single population cohort, one can start with equations that describe the 
growth and mortality of individuals (called the i-model by Metz and his colleagues). A general 
equation for the growth in size of an individual is 

where g(S, t) is a function of size and time. Mortality can be described by the function Z(S, t) and 
hatching rate, or the input of new individuals of a given size, S0, to the cohort by the function 
B(S0, t). Assume that all individuals in the population have the same functions describing their 
growth rate and mortality. Then the equation for the size distribution function,  f(S, t), is 

This equation, along with initial conditions on f(S, 0) and/or a function B(S0, t) describing 
hatching times of new individuals being added to the cohort through time, is sufficient to 
describe changes in f(S, t) for the population cohort through time.  

This model may be extended to more complex cases in which one or more other 
parameters vary across the population. For example, suppose that the growth rate of a given fish 
in the population is described by 

where g0 is a constant for a given fish but where g0 may be different for different individuals. 
Equation (2) can be solved to find fg(S, g0, t) for fish with a particular value of g0. The total size 
density function is then found by integrating over all growth rate coefficients in the population: 



 

 
 

 

 
 

 

 

 

 

 

 

 
 

 

where F(g0) is the distribution of growth rate coefficients over members of the population. 
The compact nature of equation (2) and the availability of methods for solving such 

equations make the McKendrick-von Foerster model a useful modeling approach for studying 
the dynamics of population cohorts. However, there are assumptions implicit in equation (2) that 
question its universal applicability to problems of cohort dynamics. One assumption is that the 
size density is continuous. This assumption will never be strictly true since individuals in 
populations are discrete, but it may be a useful approximation for large populations. A second 
assumption is the deterministic nature of the dynamics. Only one outcome for the development 
of the model solution through time is possible. In nature, however, one expects that there will be 
random variations in the mortality and growth of individuals. A third implicit assumption is that 
correlations among individuals do not exist. For example, one might expect in natural situations 
that the presence of larger individuals in a population may have some inhibitory effect (e.g., via 
competition) on smaller individuals and thus affect their performance relative to the case in 
which there are no larger individuals present. This possibility is ignored in equation (2). For 
cohorts of larval fish, this should not usually be a serious problem, as there is little evidence of 
competition among individuals, and larva are often dilute relative to the abundance of their food 
resource (Hunter 1981). 

It is probable that partial differential equation models will fail most often in situations in 
which populations are relatively small, stochasticity is important, and the potential exists for 
positive feedbacks to amplify the effects of stochastic events (Huston et al. 1988; Łomnicki 
1988). An example might be a cohort of fish or anurans for which food is limiting and in which 
survival requires that individuals attain a threshold size. In such a case, the great majority of 
individuals will die. Whether a few survive may depend on stochastic events, such as a few 
individuals having, by chance, somewhat greater feeding rates and reaching larger sizes. A small, 
random, higher growth rate by a few individuals can amplify if their larger size gives them a 
slight competitive advantage. Predicting the outcome of such situations is difficult (Persson 
1987; Łomnicki 1988; Wilbur 1988). 

The above limitations of the McKendrick-von Foerster model may be overcome by 
various elaborations of the model. However, these elaborations, such as the addition of 
stochasticity and interactions among various size classes, add massively to the complexity of this 
model and defeat much of its advantage of simplicity. In addition, this approach may never be 
satisfactory for small populations. Because our purpose is to compare the analytical and 
simulation models, we adopt this simpler model. 

A third approach to the handling of size-structured populations is that of Monte Carlo 
computer simulation. In this approach, initial development of a model is somewhat similar to that 
of the McKendrick-von Foerster equation. An i-model is first developed for individuals in the 
populations. However, instead of the i-state model developing into an equation of the form of 
equation (2), the Monte Carlo approach attaches an i-state model to each member of the 
population and then follows the individual growth and survival of each member through time. 
The dynamics of the whole population can be determined by summing over all of the extant 
individuals at any given time. 

This Monte Carlo approach, termed "individual-by-individual," "individual-based," or 
"individual-oriented" modeling, has many advantages of flexibility (see Huston et al. 1988). 



 

 

 

 

  
  

  

 

 

 

 
 

 
 

 
 

 
 

Because the individual-based approach uses computer simulation, it is relatively simple to make 
the i-state model of each individual stochastic rather than deterministic. Correlation effects 
between individuals can also easily be included. Small population sizes do not create a problem 
for the individual-based approach as they do for the McKendrick-von Foerster equation, and in 
fact they may be an advantage in that each individual is modeled. 

The existence of these two approaches should be viewed as an advantage rather than as a 
problem, since they appear to be complementary. The McKendrick-von Foerster representation 
should allow analytical solutions for a number of simplified, but nonetheless interesting, 
situations of cohort dynamics in which the assumptions underlying a partial differential equation 
model are satisfied. These analytical solutions will allow one to obtain a general understanding 
of how various parameters affect changes in the cohort through time. The Monte Carlo model 
allows one to extend the results to more complex cases and to cases, such as that of small 
population size, in which the partial differential equation approach is not valid. 

If these two approaches are indeed complementary, then they should yield approximately 
the same results in the limit of large population size. This expectation must be tested. The 
question then arises as to what constitutes a sufficiently large population size for application of 
the partial differential equation approach. Besides the question of population size, there are also 
questions of how such things as correlations between fish within the cohort and temporal 
correlations in fish growth affect dynamics of the cohort. 

ANALYSIS OF MODELS 

Three different types of situations for population cohorts were considered, and both i-
state distribution and i-state configuration models were developed. These situations are chosen to 
be representative of the types of growth that may occur in real populations. 

Case 1 
All fish are assumed to have the same initial size (length), S0. Growth rate, g(S, t), is a 

constant, g0, independent of length and differs for each fish, being selected from a normal 
distribution with a mean of g0m and standard deviation of b. Growth is in millimeters per day and 
does not depend directly on body size. This type of growth pattern is not unusual in larval fishes 
(Hunter 1981; Houde 1987, 1989; Pepin 1991). The probability of mortality of fish is assumed to 
vary inversely with length, Z0/S, where Z0 is a constant. Such an inverse relationship is likely 
when the mortality is due primarily to predation. Smaller individuals will be more vulnerable to 
predation and will usually have a greater number of potential predators. Size-dependent mortality 
is commonly observed in larval fish (Miller et al. 1988). 

The i-state distribution model, or partial differential equation model, for this situation is 

where the growth rates are distributed about g0 as 



 
 

 
 

   
 

 
  

 
 

  

 
 

 

 
 
 

 

 
 

 

 
 

  
 

 
 
 

 
 
 

where N0 is the total number of fish in the cohort. The analytical solution for this model is 

Case 2 
Each member of the population cohort starts at time t = 0 with a different initial size, S0, 

chosen from a normal distribution with mean, S0m, and standard deviation, b. This situation might 
reasonably occur if eggs produced vary in size across the population. The growth rate, g, for each 
fish of a given size is the same and is a linearly increasing function of size, g1S, where g1 is a 
constant. In this case, growth is in percentage of body length per day, which is also a common 
pattern in larval and juvenile fish (Hunter 1981; Houde 1987). The mortality is assumed to vary 
inversely with size, Z0/S, as in case 1. 

The partial differential equation for this situation is 

where the initial sizes are distributed as 

The analytical solution for this model is 

Case 3 
The individuals in the cohort are assumed to hatch at the same size, S0, at different times 

over a spawning season, with the hatching frequency being described by a normal distribution 
with mean time of hatching, t0, and standard deviation, b, with the spawning season assumed to 
extend to three standard deviations on either side of the mean. The growth rate, g(S, t), is 
assumed to be the same for each fish of a given size and to be described as a logistic function, 
g1S(1 - S/Smax), so that there is an upper limit on physiological size. This growth function is 
somewhat more common in models that include juvenile and adult fishes than in larval fishes 
and only serves here to illustrate the robustness of our comparisons. A constant mortality rate, 
Z0, is assumed; that is, mortality is assumed to be size-independent. This may be adequate for 
describing processes of population loss such as transport (Sinclair 1988). 

The partial differential equation for this situation is 

with the hatching times assumed to be distributed normally around a mean t0 as 

Note that we do not prescribe an initial size-frequency distribution F(S0) here as we did in cases 
1 and 2. All members of the cohort are added through the hatching function (12), which 



 

 

 
 

 
 

 

 

 

 
 

 

 

 

 
 

mathematically is a time-varying boundary condition on size at S = S0. The analytical solution 
for this model is 

The above analytical solutions were evaluated for a sequence of times. In addition to 
these analytical solutions, equivalent configuration model computer simulations (Rice et al. 
1993) were performed of the three model cases by simulating the growth and survival of 
numerous individuals (200,000 for cases 1 and 2, 20,000 for case 3). A time step of a day was 
used. On each day each fish grew an increment determined by its growth rate, g(S, t), which in 
cases 2 and 3 depended on its size, S, at the time. Also on each day, whether a given individual 
survived or not was determined by comparing a pseudorandom number R chosen uniformly on 
(0, 1) with the daily probability of mortality, Z0. Thus, mortality was a stochastic event for a 
given individual. The results of the i-state distribution and i-state configuration models were then 
compared. 

RESULTS 

Comparisons between Partial Differential Equation Solutions and Simulations 

Case 1. 
The comparison between the partial differential equation solution (7) and the Monte 

Carlo simulation for the size-frequency distribution of the fish population cohort for case 1 is 
shown in figure 1. The specific values of the parameters used for the comparison were based on 
growth and mortality for the bloater, Coregonus hoyi (Rice et al. 1987). These values are given 
in table 1. The cohort size-frequency distributions are shown for three times, t = 20, 40, and 60 
d. Agreement between the two models is acceptably close, although the numbers of fish in the 
Monte Carlo simulation tend to fall slightly below those in the partial differential equation 
solution, especially for t = 60 d. This is to be expected because the partial differential equation 
model is a continuous-time model, whereas the Monte Carlo simulation model works on discrete 
daily time steps. There is a slight difference in continuously compounded loss rates and such 
losses compounded daily. Over a period of 60 d, such a difference will be visible, as seen in 
figure 1. 



 
  

   

 

 

 
 

  

 

FIG. 1.—Case 1 comparison between the partial differential equation solution, eq. (7) (dashed line), and the 
equivalent Monte Carlo simulation (solid line) for the size-frequency distribution of a cohort. An initial 200,000 fish 
were simulated in the Monte Carlo simulation. 

The Monte Carlo model gives us the opportunity for modifying the rules for growth 
arbitrarily in ways that a partial differential equation formulation cannot describe. As a first 
example, consider the case in which there is some randomness in the daily growth increment due 
to variability in the daily encounters of individual fish with potential prey. In particular, on each 
day allow the growth rate of each fish to vary randomly and uniformly within ±0.15 mm/d 
around the mean growth rate of a particular fish. It seems likely that daily growth rates will be 
correlated, but we first examine the purely stochastic effect, without correlations. The results of 
this added randomness can be compared with the baseline case of figure 1 in which there is no 
randomness. The comparison is shown in figure 2 at a time of 60 d, where the open bars 
represent the numbers in the nonrandom simulation and the solid bars represent the numbers in 
the random simulation. There is no apparent difference between the two size-frequency 
distributions. A two-sided Kolmogorov-Smirnov (K-S) test was applied to the distributions, 
assuming 42 degrees of freedom (for the number of 1-mm size classes). The calculated K-S 
statistic is 0.0696. Since the critical value at α = 0.1 for a two-sided test is 0.05809 and at α = 
0.05 is 0.06476, then .01 < P < .05, and the two distributions in figure 2 are just barely different 
at α = 0.05. Hence, stochasticity by itself seems to have little effect on the average growth rates 
of individuals. 

The small effect of randomness on the size-frequency distribution is not too surprising 
and can be estimated analytically. Randomness in individual growth of fish could be included in 
the model (eq. [5]) by adding a second-order term, 0.5 ∂2/∂S2(Df), where D is a diffusion 
coefficient. In the case in which there is a ±0.15 mm/d variability in growth, the associated value 
of D would be (0.15)2/2, or approximately 0.0112. Although the full equation (5) cannot be 
solved analytically when the second-order diffusion term is added, one can estimate the effects 
of the diffusion term on the size-frequency distribution to show that only an approximate 15% 



 

 

  

 

    
  
  

 

 

 

 

 
 

 

increase in its standard deviation after 60 d would result. Because in the Monte Carlo simulation 
the upper limits on the variation in growth were ±0.15 mm/d, the increase in the standard 
deviation of the size-frequency distribution should actually be much smaller than the 
approximate prediction. 

TABLE 1 
PARAMETER VALUES USED IN EQUATIONS (7), (10), AND (13) 

NOTE.—An ellipsis (. . .) means that the parameter is not relevant to a particular equation.  
* Standard deviation for distribution of growth rates. 
† Standard deviation for distribution of initial sizes.  
‡ Standard deviation for distribution of hatching times. 

It is reasonable to suppose, however, that instead of the purely random daily variations in 
growth assumed there may be correlations (memory) between the growth increments from day to 
day. For example, a growth increment on day t that is higher than the mean because of 
stochasticity is likely to be followed on day t + 1 by a growth increment that is also higher than 
the mean. That this can occur in fish is "conventional wisdom" among fishery scientists; it seems 
likely that a fish that does better than average in feeding on 1 d will be in good condition the next 
and thus have better prey capture efficiency. 

Studies have been made of the widths of daily rings in otoliths of fish to provide an 
approximate age/growth history that might confirm this conventional wisdom. It has been shown 
that wider rings are deposited at higher growth rates and day-to-day ring widths appear to be 
correlated, but daily increment spacing is difficult to relate precisely to daily growth rates (Rice 
et al. 1985). Direct measurements of lengths of tagged and multiply recaptured larval fish may be 
needed to provide proof of day-to-day correlations in growth. However, for present purposes, 
suppose such correlations exist. To mimic them, we assume that for a given fish the growth 
increment on day t is chosen as the new mean growth rate. The growth increment for this fish on 
day t + 1 is chosen randomly and uniformly over the interval ±0.15 mm/d around this new mean. 
With this rule, in principle the growth increments of some fish could become very large, while 
others could become very small after a number of days. To prevent growth rates becoming 
unrealistically large on the one hand or negative on the other, limits of 0.0 mm/d and 1.0 mm/d 
(Pepin 1991) were put on the growth rates of individual fish. When these simulations were 
performed a significant difference was found between the Monte Carlo simulations and the 
baseline case (fig. 3). The K-S statistic is 0.998, and the two distributions are significantly 
different at α = 0.01. Correlated daily growth rates, or memory, caused the distribution of growth 
rates in the population to broaden, which resulted both in much faster growers and much slower 
growers. Because the size-dependent mortality acted much more intensely on the slower-growing 
fish, there was a consequent shifting to the right of the size frequency distribution at 60 d. 



 

 
   

   
 

  
 

 

 

 

FIG. 2.—Case 1 size-frequency distributions from individual-based computer simulations of a fish cohort after 60 d. 
The open bars represent the survivors of an initial 200,000 fish, where daily growth of individuals was deterministic 
(no stochasticity in daily growth). The solid bars represent the equivalent case in which each day there could be a 
random variation of up to ±0.15 mm around the mean growth rate. 

The choice of ±0.15 mm/d as the upper and lower limits on the daily random variation 
about the mean in growth increment is arbitrary. Actual variances in growth resulting from 
random effects on feeding could be much greater, so it is worth exploring the effect of larger 
variance. Simulations indicate that there is a substantial effect of the choice of daily variance on 
the outcomes of both fraction of survivors and mean length of survivors after 60 d. Figure 4 
shows the effect of increasing variance with and without memory. Without memory, there is 
negligible effect from increased variance. However, with-memory survival increases with 
increasing variance. This must reflect a larger fraction of fish reaching larger sizes more rapidly 
and escaping size-dependent mortality. A plot of mean length as a function of increasing 
variance shows, in the case of correlated daily growth rates, a peculiar dome-shaped response 
(fig. 5). As the limit on daily variability increases beyond ±0.15 mm/d, the mean length of 
survivors at 60 d starts to decrease. The precise cause is difficult to explain, but it is related to the 
limitation rule for maximum daily growth that is employed. In figures 4 and 5 the rule puts a 
limit of 1.0 mm/d on the daily growth increment of fish in the simulation. If this limit is 
increased to 1.5 mm/d, which is a reasonable large average value for larval fish (Pepin 1991), 
survival at 60 d increases to a much larger value (fig. 6), and the mean size after 60 d reaches a 
larger peak shifted toward larger values of variance (fig. 7). 



 
   

  

 
 

 

 
    

 

 

FIG. 3.—Case 1 size-frequency distributions from individual-based computer simulations of a fish cohort after 60 d. 
The open bars represent the survivors of an initial 200,000 fish, where daily growth of individuals was 
deterministic. The solid bars represent the equivalent case in which each day there could be a random increment of 
up to ±0.15 mm around the preceding day's growth rate. This simulation contrasts with that of fig. 2 because the 
daily growth is now positively correlated with growth on the preceding day. 

FIG. 4.—Case 1 percentage survival of fish after 60 d as a function of variability in daily growth with memory and 
without memory. 

These results indicate the need for a much better understanding of the limits on the maximum 
daily growth of individual fish through ontogeny, as such limits can have a large effect on the 
consequences of variability in daily growth with memory. The above comparisons also 
underscore the importance of memory in growth rate. No studies have examined variations in 
daily growth rates in individually marked larval fish. Such research would prove useful. Without 
this correlation of variance in growth rates from 1 d to the next, the variance itself has little 
effect. 



 
      

 
 

 
  

  
 

 
   

  
 
 

FIG. 5.—Case 1 mean length after 60 d as a function of variability in daily growth with memory and without 
memory. 

FIG. 6.—Case 1 comparisons of survival after 60 d as a function of variability in daily growth with memory for 
limits on maximum daily growth rate of 1.0 and 1.5 mm/d. 

FIG. 7.—Case 1 comparisons of mean length after 60 d as a function of variability in daily growth with memory for 
limits on maximum daily growth rate of 1.0 and 1.5 mm/d. 



 

 

 
    

   
 

 

 

 

   

Case 2. 
The comparison between the partial differential equation solution (10) and the equivalent 

Monte Carlo simulation is shown in figure 8. The specific values for the parameters of the 
models are shown in table 1. The cohort size-frequency distribution is shown for three times, t = 
20, 40, and 60 d. Agreement is acceptably close, though the simulation values again tend to fall 
slightly below the partial differential equation values. The absence of skewing to the right of the 
size-frequency distributions in figure 8 may be surprising, as such skewing is frequently 
observed in fish populations. However, even though the growth rate in this case increases with 
size, it can be demonstrated mathematically that an initially normal distribution of sizes will 
remain normal through time. Other mechanisms, such as an unequal distribution of allocation of 
limiting resources among individuals, if included in the model, could produce skewed size-
frequency distributions through time. It has been shown that when the food availability to 
smaller fish becomes more limiting than food availability to larger fish, skewing and even the 
emergence of size bimodality can occur (DeAngelis and Coutant 1982). 

FIG. 8.—Case 2 comparisons between the partial differential equation solution, eq. (10) (dashed line), and the 
equivalent Monte Carlo simulation (solid line) for the size-frequency distribution of the cohort. An initial 200,000 
fish were used in the Monte Carlo simulation. 

As in case 1, the Monte Carlo simulation is next changed by allowing day-today changes in the 
growth increment by amounts lying randomly in the interval ±0.15 mm/d (with no memory). We 
anticipated in this case that there might be some interaction of the size-dependent growth rate 
with the stochastic variation that would allow some small fraction of the fish to attain very large 
growth rates and skew the distribution at 60 d. However, there was no indication of any 
difference between the baseline and stochastic simulations (fig. 9). Hara (1984) has shown, in 
analyzing partial differential equation models of plant populations, however, that if the stochastic 
variation occurs not in the daily growth, g1S, but in the relative growth rate, g1 S/S = g1, there can 
be a much more dramatic effect on the size-frequency distribution through time. 



 
  

 
   

 

 

 

 

FIG. 9.—Case 2 size-frequency distributions from individual-based computer simulations of a fish cohort after 20 
and 60 d. The diamonds represent the case in which there was no stochasticity in daily growth, whereas the squares 
represent daily random variation in growth increment of up to ±0.15 mm/d. 

Case 3. 
The comparison between the partial differential equation model (13) and the equivalent 

Monte Carlo simulation for the cohort size-frequency distribution is shown in figure 10. The 
specific parameter values for the model are shown in table 1. The cohort size-frequency 
distributions are compared for two times, t = 40 and 60 d. Agreement is once again very good. 
(Although a maximum size of 50 mm may be unrealistically small for a fish that hatches at 12 
mm, the main purpose of the simulation was to compare the results of methods, an objective that 
is not affected by a somewhat unrealistic choice of a parameter.) 

As before, one can easily add special features to the Monte Carlo simulation. One option 
is to make the growth rate density-dependent. For example, the limitation of size to Smax = 50 
might be relaxed as number of fish in the cohort decline. This situation can be simulated by 
replacing Smax with Smax(N0/N), where N0/N is the ratio of the initial number of fish to the current 
number. As N decreases through mortality, the upper limit on size becomes progressively larger. 
The simulation results for this case show the size-frequency distribution at 40 and especially 60 d 
to be shifted considerably to the right of the baseline cases (fig. 11). Adding stochasticity (in the 
range ±0.15 mm/d) to the growth rate with no memory results in little change to this explicitly 
density-dependent case (fig. 11). Although equation (13) could not be solved analytically in the 
density-dependent case, it could be solved numerically. This was done by an approximation 
method, using the analytical solution (13) to step the solution one day at a time and adjusting 
Smax by the ratio N0/N on each time step. The numerical solution is shown for t = 60 d in figure 
11, and its agreement with the Monte Carlo simulation is good enough for many of the purposes 
to which such models would be put. 



 
    

    
 

 

 

 

 

 

 

 
 

FIG. 10.—Case 3 comparisons between the partial differential equation solution, eq. (13) (dashed line), and the 
equivalent Monte Carlo simulation (solid line) for the size-frequency distribution of the cohort. An initial 20,000 
fish were used in the Monte Carlo simulation. 

DISCUSSION 

The results of this work provide some useful insights concerning the application of 
modeling to the study of recruitment variability in fish populations. They show that equivalent 
partial differential equation models and Monte Carlo models of fish cohorts can produce very 
similar results for the limiting cases in which analytical solutions are possible. The results do 
have slight systematic differences because partial differential equations are continuous-time 
models, whereas the Monte Carlo simulations work on discrete daily time steps. Survival is 
lower in the daily compounded mortality. This did not make much difference in the cases 
considered, but for higher precision in the Monte Carlo simulations, one might want to consider 
taking smaller time steps (e.g., fraction of a day). 

The cases considered are simple ones, and the results do not prove that the Monte Carlo 
simulation approach will yield precise approximations of the partial differential equations in all 
cases. However, in most modeling studies the uncertainty in the parameter values is great enough 
anyway that very high precision in model analysis is not crucial. If the level of agreement shown 
in the comparisons of the two approaches is acceptable for typical problems of computing size 
distributions in populations, then it means that Monte Carlo simulations with as few as 20,000 
individual organisms can provide a good description of the changing size-frequency distribution. 
This appears to hold fairly well even when mortality is high, so that numbers become quite low 
by the end of the simulation. 

The addition of stochasticity without memory in the Monte Carlo model produced results 
that did not deviate significantly from the baseline cases. This may imply that the partial 
differential equation approach may often apply even when there is some stochasticity in the 
system. However, from Hara's (1984) model results of stochasticity in growth in plant 
populations, this may not be generalizable, particularly to situations in which the stochasticity in 



 
  

 
  

     
 

 

 
 

 
 

 

 

 

 
 

question occurs in a rate coefficient for exponential growth. 

FIG. 11.—Case 3 size-frequency distributions from individual-based computer simulations of a fish cohort after 40 
and 60 d. The dotted lines represent the simulation in which there are no positive effects on growth rate as number 
density decreases. The thick solid lines represent the simulation in which the upper limit on size increases as N/N0 
decreases. The thin solid lines represent the simulation in which stochasticity in daily growth (±0.15 mm/d) is added 
to the density-dependent effect. The open circles at t = 60 represent a numerical solution of the partial differential 
eq. (13). 

It was also shown that more complex formulations of individual growth, such as daily 
growth rates that are correlated, can cause dramatic changes in the dynamics of the cohort. 
Although the results of these simulations cannot be checked against simple partial differential 
equation models, the fact that we have checked other cases against the partial differential 
equation models gives us confidence that the results are correct. Additional biological research 
on correlation of daily growth rates of individual larvae would help in forecasting the elaboration 
of variance in cohort size structure. 

This work also showed the effects of other assumptions. The assumption concerning the 
ontogeny of maximum daily growth rate among individuals had a effect on the way in which 
variability in growth rate with memory could affect the survival and mean length of fish after 60 
d. Our assumptions are realistic relative to observed average growth rates of marine larvae 
(Pepin 1991), but again, we know little regarding variation among and within individual growth 
rates. Knowledge of this maximum daily growth rate is critical to predictions of fish population 
behavior in variable environments. Recruitment in fishes seems to depend strongly on individual 
variation. Models such as those presented here suggest where individual variation in parameters 
could have the greatest effect on cohort survival and size structure. In this way they help clarify 
research priorities for biologists interested in recruitment. 
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