524 research outputs found
Lamp spectrum and spatial brightness at photopic levels: Investigating prediction using S/P ratio and gamut area
An experiment was carried out to investigate spatial brightness at photopic levels under lighting of different spectral power distributions. One aim was to replicate the experiment reported in 1990 by Berman et al. demonstrating that light with a higher scotopic / photopic (S/P) ratio would be perceived as brighter. In addition, a third SPD was included to investigate gamut area and two additional procedures were employed to provide concurrent validity of the findings. It was concluded that while lighting of higher S/P ratio was brighter, the S/P ratio alone was insufficient to predict spatial brightness. A metric for the chromatic contribution is also needed, this being provided by gamut area in the current work
Lamp spectrum and spatial brightness at photopic levels: A basis for developing a metric
Light sources are available in a variety of spectral power distributions (SPDs) and this affects spatial brightness in a manner not predicted by quantities such as illuminance. Tuning light source SPD to better match the sensitivity of visual perception may allow the same spatial brightness but at lower illuminance with potential reductions in energy consumption. Consideration of experimental design was used to review 70 studies of spatial brightness. Of these, the 19 studies considered to provide credible evidence of SPD effects were used to explore metrics for predicting the effect of SPD but did not provide conclusive evidence of a suitable metric, in part because of incomplete reporting of SPD characteristics. For future work, these data provide an independent database for validating proposed metrics
Nuclear spins, magnetic moments and quadrupole moments of Cu isotopes from N = 28 to N = 46: probes for core polarization effects
Measurements of the ground-state nuclear spins, magnetic and quadrupole
moments of the copper isotopes from 61Cu up to 75Cu are reported. The
experiments were performed at the ISOLDE facility, using the technique of
collinear laser spectroscopy. The trend in the magnetic moments between the
N=28 and N=50 shell closures is reasonably reproduced by large-scale
shell-model calculations starting from a 56Ni core. The quadrupole moments
reveal a strong polarization of the underlying Ni core when the neutron shell
is opened, which is however strongly reduced at N=40 due to the parity change
between the and orbits. No enhanced core polarization is seen beyond
N=40. Deviations between measured and calculated moments are attributed to the
softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.Comment: 13 pagers, 19 figures, accepted by Physical Review
Halos and related structures
The halo structure originated in nuclear physics but is now encountered more
widely. It appears in loosely bound, clustered systems where the spatial
extension of the system is significantly larger than that of the binding
potentials. A review is given on our current understanding of these structures,
with an emphasis on how the structures evolve as more cluster components are
added, and on the experimental situation concerning halo states in light
nuclei.Comment: 27 pages, 3 figures, Contribution to Nobel Symposium 152 "Physics
With Radioactive Beams
Isomer shift and magnetic moment of the long-lived 1/2 isomer in Zn: signature of shape coexistence near Ni
Collinear laser spectroscopy has been performed on the Zn
isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred
milliseconds half-life was confirmed, and the nuclear spins and moments of the
ground and isomeric states in Zn as well as the isomer shift were
measured. From the observed hyperfine structures, spins and
are firmly assigned to the ground and isomeric states. The magnetic moment
(Zn) = 1.1866(10) , confirms the spin-parity
with a shell-model configuration, in excellent
agreement with the prediction from large scale shell-model theories. The
magnetic moment (Zn) = 1.0180(12) supports a
positive parity for the isomer, with a wave function dominated by a 2h-1p
neutron excitation across the shell gap. The large isomer shift
reveals an increase of the intruder isomer mean square charge radius with
respect to that of the ground state:
= +0.204(6) fm, providing first evidence of shape coexistence.Comment: 5 pages, 4 figures, 1 table, Accepeted by Phys. Rev. Lett. (2016
Vegetation in urban streets, squares, and courtyards
One of various ways in which vegetation cover used in the greening of urban areas can help improve the health and well-being of people is in how it changes the acoustic environment. This chapter
presents findings of computer simulations and scale modelling to examine and quantify the effectiveness of green roof and green wall (vertical garden) systems in reducing road traffic noise for streets, squares, and roadside courtyards. Noise reduction by sound absorption in reflected
and diffracted (over roofs) sound paths is investigated. Particular attention is paid to the importance of vegetation placement relative to the receiver/listening positions. Because the soil substrate used for the vertical walls has good sound absorption properties, it also can be used for green barriers. In this chapter, the effects of a low barrier made of green wall substrate are studied for an installation on the ground and on the top of buildings surrounding a courtyard
Nuclear charge radii of molybdenum fission fragments
AbstractRadioisotopes of molybdenum have been studied using laser spectroscopy techniques at the IGISOL facility, University of Jyväskylä. Differences in nuclear charge radii have been determined for neutron deficient isotopes 90,91Mo and neutron rich isotopes 102–106,108Mo (and all stable isotopes). A smooth transition in the mean square charge radii is observed as the neutron number increases with no sudden shape change observed in the region around N=60. As N increases, the nuclear deformation appears to go beyond a maximum and a fall off at N=66 is observed. The magnetic moments of the odd isotopes 91,103,105Mo are also determined
- …