606 research outputs found

    Measuring device Patent

    Get PDF
    Expulsion and measuring device for determining quantity of liquid in tank under conditions of weightlessnes

    Financial Distress Predicted by Cash Flow and Leverage with Capital Intensity as Moderating

    Get PDF
    The level of financial distress is a condition where the company\u27s finances are in an unhealthy state or crisis. This study aims to examine the effect of cash flow and leverage in predicting the level of financial distress which is moderated by capital intensity at PT. Indah Karya (Persero). The research method used is descriptive verification with a quantitative approach. To assess this research, the 2013-2017 Quarterly Financial Report is used. The results showed that cash flows has a negative and significant influence in predicting the level of financial distress, leverage (debt to asset ratio) has a positive and insignificant influence in predicting the level of financial distress, capital intensity has a negative and insignificant effect in moderating the effect of cash flows on the level of financial difficulty and capital intensity has a positive and insignificant influence in moderating the influence of leverage in predicting the level of financial distress. Simultaneously cash flow and leverage in predicting the level of financial distress which is moderated by capital intensity together - have a significant effect on the condition of the level of financial distress of PT. Indah Karya (Persero). Another result found in this study is that the capital intensity variable in moderating leverage has the strongest influence in predicting the level of corporate financial distress which is seen by using an assessment of total assets to sales and debt to asset ratio. With these results, the company can use it as an early detection in the face of financial distress. Keywords: CashFlow, Leverage, Capital Intensity, Financial distres

    Localization Recall Precision (LRP): A New Performance Metric for Object Detection

    Get PDF
    Average precision (AP), the area under the recall-precision (RP) curve, is the standard performance measure for object detection. Despite its wide acceptance, it has a number of shortcomings, the most important of which are (i) the inability to distinguish very different RP curves, and (ii) the lack of directly measuring bounding box localization accuracy. In this paper, we propose 'Localization Recall Precision (LRP) Error', a new metric which we specifically designed for object detection. LRP Error is composed of three components related to localization, false negative (FN) rate and false positive (FP) rate. Based on LRP, we introduce the 'Optimal LRP', the minimum achievable LRP error representing the best achievable configuration of the detector in terms of recall-precision and the tightness of the boxes. In contrast to AP, which considers precisions over the entire recall domain, Optimal LRP determines the 'best' confidence score threshold for a class, which balances the trade-off between localization and recall-precision. In our experiments, we show that, for state-of-the-art object (SOTA) detectors, Optimal LRP provides richer and more discriminative information than AP. We also demonstrate that the best confidence score thresholds vary significantly among classes and detectors. Moreover, we present LRP results of a simple online video object detector which uses a SOTA still image object detector and show that the class-specific optimized thresholds increase the accuracy against the common approach of using a general threshold for all classes. At https://github.com/cancam/LRP we provide the source code that can compute LRP for the PASCAL VOC and MSCOCO datasets. Our source code can easily be adapted to other datasets as well.Comment: to appear in ECCV 201

    Conservative interacting particles system with anomalous rate of ergodicity

    Full text link
    We analyze certain conservative interacting particle system and establish ergodicity of the system for a family of invariant measures. Furthermore, we show that convergence rate to equilibrium is exponential. This result is of interest because it presents counterexample to the standard assumption of physicists that conservative system implies polynomial rate of convergence.Comment: 16 pages; In the previous version there was a mistake in the proof of uniqueness of weak Leray solution. Uniqueness had been claimed in a space of solutions which was too large (see remark 2.6 for more details). Now the mistake is corrected by introducing a new class of moderate solutions (see definition 2.10) where we have both existence and uniquenes

    t1/3t^{1/3} Superdiffusivity of Finite-Range Asymmetric Exclusion Processes on Z\mathbb Z

    Full text link
    We consider finite-range asymmetric exclusion processes on Z\mathbb Z with non-zero drift. The diffusivity D(t)D(t) is expected to be of O(t1/3){\mathcal O}(t^{1/3}). We prove that D(t)Ct1/3D(t)\ge Ct^{1/3} in the weak (Tauberian) sense that 0eλttD(t)dtCλ7/3\int_0^\infty e^{-\lambda t}tD(t)dt \ge C\lambda^{-7/3} as λ0\lambda\to 0. The proof employs the resolvent method to make a direct comparison with the totally asymmetric simple exclusion process, for which the result is a consequence of the scaling limit for the two-point function recently obtained by Ferrari and Spohn. In the nearest neighbor case, we show further that tD(t)tD(t) is monotone, and hence we can conclude that D(t)Ct1/3(logt)7/3D(t)\ge Ct^{1/3}(\log t)^{-7/3} in the usual sense.Comment: Version 3. Statement of Theorem 3 is correcte

    On the Fibonacci universality classes in nonlinear fluctuating hydrodynamics

    Full text link
    We present a lattice gas model that without fine tuning of parameters is expected to exhibit the so far elusive modified Kardar-Parisi-Zhang (KPZ) universality class. To this end, we review briefly how non-linear fluctuating hydrodynamics in one dimension predicts that all dynamical universality classes in its range of applicability belong to an infinite discrete family which we call Fibonacci family since their dynamical exponents are the Kepler ratios zi=Fi+1/Fiz_i = F_{i+1}/F_{i} of neighbouring Fibonacci numbers FiF_i, including diffusion (z2=2z_2=2), KPZ (z3=3/2z_3=3/2), and the limiting ratio which is the golden mean z=(1+5)/2z_\infty=(1+\sqrt{5})/2. Then we revisit the case of two conservation laws to which the modified KPZ model belongs. We also derive criteria on the macroscopic currents to lead to other non-KPZ universality classes.Comment: 17 page

    Lattice gas model in random medium and open boundaries: hydrodynamic and relaxation to the steady state

    Full text link
    We consider a lattice gas interacting by the exclusion rule in the presence of a random field given by i.i.d. bounded random variables in a bounded domain in contact with particles reservoir at different densities. We show, in dimensions d3d \ge 3, that the rescaled empirical density field almost surely, with respect to the random field, converges to the unique weak solution of a non linear parabolic equation having the diffusion matrix determined by the statistical properties of the external random field and boundary conditions determined by the density of the reservoir. Further we show that the rescaled empirical density field, in the stationary regime, almost surely with respect to the random field, converges to the solution of the associated stationary transport equation

    Energy transfer in a fast-slow Hamiltonian system

    Get PDF
    We consider a finite region of a lattice of weakly interacting geodesic flows on manifolds of negative curvature and we show that, when rescaling the interactions and the time appropriately, the energies of the flows evolve according to a non linear diffusion equation. This is a first step toward the derivation of macroscopic equations from a Hamiltonian microscopic dynamics in the case of weakly coupled systems

    The Current State of Performance Appraisal Research and Practice: Concerns, Directions, and Implications

    Get PDF
    On the surface, it is not readily apparent how some performance appraisal research issues inform performance appraisal practice. Because performance appraisal is an applied topic, it is useful to periodically consider the current state of performance research and its relation to performance appraisal practice. This review examines the performance appraisal literature published in both academic and practitioner outlets between 1985 and 1990, briefly discusses the current state of performance appraisal practice, highlights the juxtaposition of research and practice, and suggests directions for further research
    corecore