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Abstract. Average precision (AP), the area under the recall-precision
(RP) curve, is the standard performance measure for object detection.
Despite its wide acceptance, it has a number of shortcomings, the most
important of which are (i) the inability to distinguish very different RP
curves, and (ii) the lack of directly measuring bounding box localiza-
tion accuracy. In this paper, we propose “Localization Recall Precision
(LRP) Error”, a new metric which we specifically designed for object
detection. LRP Error is composed of three components related to local-
ization, false negative (FN) rate and false positive (FP) rate. Based on
LRP, we introduce the “Optimal LRP”, the minimum achievable LRP
error representing the best achievable configuration of the detector in
terms of recall-precision and the tightness of the boxes. In contrast to
AP, which considers precisions over the entire recall domain, Optimal
LRP determines the “best” confidence score threshold for a class, which
balances the trade-off between localization and recall-precision. In our
experiments, we show that, for state-of-the-art (SOTA) object detectors,
Optimal LRP provides richer and more discriminative information than
AP. We also demonstrate that the best confidence score thresholds vary
significantly among classes and detectors. Moreover, we present LRP re-
sults of a simple online video object detector which uses a SOTA still
image object detector and show that the class-specific optimized thresh-
olds increase the accuracy against the common approach of using a gen-
eral threshold for all classes. At https://github.com/cancam/LRP we
provide the source code that can compute LRP for the PASCAL VOC
and MSCOCO datasets. Our source code can easily be adapted to other
datasets as well.

Keywords: Average Precision, Object Detection, Performance Metric,
Optimal Threshold, Recall-precision

1 Introduction

Today “average precision” (AP) is the de facto standard for performance evalua-
tion in object detection. The official success criteria in all major object detection
datasets and competitions [1,2,3] are based on AP. Popular still-image object de-
tection [4,5,6,7], video object detection [8,9,10] and online video object detection
[11,12] papers mainly report AP and mean-AP (mAP; explained in Section 3)
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results. AP not only enjoys such vast acceptance but it also appears to be un-
challenged. Except for a small number of papers which do ablation studies [5,7],
AP appears to be the sole criterion used to compare object detection methods.

(a) (b) (c)

(d) (e) (f)

Fig. 1: Three different object detection results (for an image from ILSVRC [2]) with
very different RP curves but the same AP. AP is unable to identify the difference
between these curves. (a,b,c) Red, blue and green colors denote ground-truth, true
positives; false positives respectively. Numbers are detection confidence scores. (d,e,f)
RP curves, AP and LRP results for the corresponding detections in (a,b,c). Red crosses
indicate Optimal LRP points. [Best viewed in color]

Despite its popularity, AP has certain deficiencies. First, AP cannot dis-
tinguish between very different RP curves: In Fig. 1, we present detection
results of three hypothetical object detectors, on the same image. The detector
in (a) detects only half of the objects but with full precision; this is a low-
recall-high-precision detector. In contrast, the detector in (b) detects all objects;
however, for each correct detection it also produces a close-to-duplicate detection
which escapes non-maxima suppression. Hence, detector (b) is a high-recall-low-
precision detector. And the detector in (c) appears to be in between; it represents
a detector with higher precision at lower recall and vice versa. Despite these
very different characteristics, the APs of these differently-behaving detectors are
exactly the same (AP=0.5). One needs to inspect the RP curves in order to
understand the differences in behavior, which can be time-consuming and im-
practical with large number of classes such as in the ImageNet object detection
challenge [2] with 200 classes.

Another deficiency of AP is that it does not explicitly include localiza-
tion accuracy: One cannot infer from AP the tightness level of the bounding
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box detections. Nevertheless, since extracting tighter bounding boxes is a desired
property, nearly every paper on the topic discusses the issue mostly qualita-
tively [4,5,6,9,12] and some quantitatively by computing AP scores for different
intersection-over-union (IoU) thresholds [4,7,5]. However, this quantitative ap-
proach does not directly measure the localization accuracy either (but it gives
an idea about it) and for the qualitative approach, it is very likely for the sample
boxes to be very limited and biased. We discuss other less severe deficiencies of
AP in Section 3.

A desirable performance measure (or metric) is expected to include all of
the factors related with performance. In object detection, the most important
three factors are (i) the localization accuracy of the true positives (TP), (ii) the
false positives (FP) rate and (iii) the false negative (FN) rate. Being able to
represent the strengths and weaknesses of a detector, based on these factors,
is another desirable property for a performance measure since it can reveal im-
provement directions. Furthermore, a performance metric should reveal the RP
characteristics of a detector (as LRP achieves in Fig. 1). This ability would ben-
efit certain applications. For instance, using a high-precision detector is common
in visual tracking methods [13,14,15,16,17], while initializing the tracker, known
as tracking by detection as faster response times are required. Also, in online
video object detection, the current approach is to use a still-image object detec-
tor with a general threshold (e.g., Association-LSTM [12] uses SSD [4] detections
with confidence score above 0.8). A desirable performance measure should help
in setting an optimal confidence score threshold per class.

In this paper, we propose a new metric called the “Localization-Recall-
Precision Error” (LRP, for short). LRP involves appropriate components closely
related to the precision, recall and IoU overlap and each parametrization of LRP
corresponds to a point on the RP curve. We propose the “Optimal LRP”, the
minimum achievable LRP error, as the alternative performance metric to AP.
Optimal LRP alleviates the drawbacks of AP, represents the tightness of the
bounding-boxes and the shape of the RP curve via its components and is more
suitable for ablation studies. Finally, based on Optimal LRP, a confidence score
thresholding method is proposed to decrease the number of detections in an
optimal manner.

We conducted three sets of experiments in order to backup our claims. The
first analyzes the parameters of LRP. In the second one, we computed both
AP and Optimal LRP for common, state-of-the-art object detectors [4,5,7] on
MSCOCO [1]. We showed that Optimal LRP provides richer and more discrim-
inative information than AP. In the third set, we built a simple, online video
object detector that uses a still-image object detector (RetinaNet [7]) as its
backbone. We showed that the class-specific confidence score thresholds which
are provided by Optimal LRP improved the performance against the common
approach of using a general threshold for all classes.
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2 Related Work

Here we review the performance measures related to recall-precision and/or ob-
ject detection. Since AP is a central topic in this paper, we did not limit our
discussion on AP here in a subsection but instead, we discuss several aspects of
AP throughout the paper.

Information Theoretic Performance Measures: Several performance
measures have been derived on the confusion matrix. Among them, the most
relevant measure is the F-measure [18] defined as the harmonic mean of precision
and recall. However, F-measure violates the triangle inequality, and therefore,
not suitable as a metric [19]. Furthermore, F-measure is not symmetric in the
positive and negative classes. These violations prevent the use of F-measure for
comparison among classifiers in a consistent manner. Moreover, [20] points out
that, except for accuracy, all information theoretic performance measures have
undefined intervals. For example, F-measure is undefined when the number of TP
is 0 even if there are detections. Since F-measure is not directly designed for the
object detection problem, the tightness of the bounding boxes is not evaluated.
AP is an information theoretic measure, too. We talk about its deficiencies in
Sections 1 and 3.

Point Multi-target Tracking Performance Metrics: Object detection
is very similar to the multi-target tracking problem. In both problems, there
are multiple instances to detect, and the localization, FN and FP rates are
common criteria for success. Therefore, here we review the measures and metrics
used in multi-target tracking. Currently, component-based performance metrics
are the accepted way of evaluating point multi-target tracking filters aiming
to infer the state of each target given the measurements until the detection
time. The first metric to combine the localization and cardinality (including
both FP and FN) errors is the Optimal Subpattern Assignment (OSPA) [21].
Following OSPA, several measures and metrics have been proposed as its variants
[21,22,23,24,25,26,27]. However, similar measures and metrics are lacking in the
object detection literature, though similar performance evaluation problems are
observed.

Setting the Thresholds of the Classifiers: The research on the optimiza-
tion of a precision-recall balanced performance measure is mostly concentrated
on the F-measure. [28] considers maximizing F-measure at the inference time
using plug-in rules, while [29,30] offer maximization during training for support
vector machines and conditional random fields. Similarly, [31] aims to find opti-
mal thresholds for a probabilistic classifier based on maximizing the F-measure.
Finally, [32] presents a theoretical analysis of optimization of the F-measure,
which also confirms the threshold-F-measure relationship depicted in [31,33].

In summary, we see that existing methods mostly focus on the F-measure
for optimizing the thresholds for classifiers, which, however, has the aforemen-
tioned drawbacks. Moreover, F-measure is shown to be concave with respect to
its inputs, number of TPs and FPs [31], which makes the analytical optimiza-
tion impossible. In addition, none of these studies have considered the object
detection problem in particular, thus no localization error is directly involved
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for these measures. Therefore, different from the previous work, we specifically
are interested in performance evaluation and optimal thresholding of the object
detectors of deep learning frameworks. Moreover, we directly optimize a well-
behaving function which has a smaller domain in practice in order to identify
the class-specific thresholds.

3 Average Precision: an analysis and its deficiencies

Due to space constraints, we omit the definition of AP and refer the reader to the
accompanying supplementary material or [3] for a definition. There exist minor
differences in AP’s practical usage. For example, AP is computed by simply
integrating over 11 points (that divide the entire recall domain in equal pieces)
in the PASCAL VOC 2007 challenge [3] whereas in MSCOCO [1], 101 points are
used. Precision values at intermediate points are simply interpolated to prevent
wiggles in the curve, by setting it to the maximum precision obtained in the
interval of higher recall than the current point. While a single intersection-over-
union (IoU) threshold, which is 0.5, is used in PASCAL VOC [3]; a range of IoU
thresholds (from 0.5 to 0.95) are used in MSCOCO; the average AP over this
range of IoU thresholds is also called mAP.

AP aims to evaluate the precision of the detector over the entire recall do-
main. Thus, it favors the methods that have precision over the entire recall
domain, instead of the detectors whose RP curves are nearer to the top-right
corner. In other words, AP does not compare the maximum but the overall
capability/performance of the detectors.

The most important two deficiencies of AP are discussed in Section 1. In the
following, we list other, more minor deficiencies.

AP is not confidence-score sensitive. Since the sorted list of the de-
tections is required to calculate AP, a detector generating results in a limited
interval will lead to the same AP. To illustrate, there are only 2 detections with
same confidence score in Fig. 1 out of 4 ground truths. Note that setting the
confidence scores to any value(i.e. 0.01) leads to the same AP as long as the
order is preserved.

AP does not suggest a confidence score threshold for the best set-
ting of the object detector. However, in a practical application, the detections
are usually required to be filtered owing to response time limitations. For ex-
ample, the state-of-the-art online object detector [12] applies a confidence score
threshold of 0.8 on the SSD method [4] and obtains 12fps in this fashion.

AP uses interpolation between neighboring recall values, which is
especially problematic for classes with very small size. For example, “toaster”
class of [1] has 9 instances in the validation 2017 set.

4 Localization-Recall-Precision (LRP) Error

Let X be the set of ground truth boxes and Y be the set of boxes returned by
an object detector. To compute LRP(X,Ys), the LRP error of Ys against X at
a given score threshold s (0 ≤ s ≤ 1) and IoU threshold τ (0 ≤ τ < 1); first,
we create a new set, Ys, containing only the detections that pass the threshold s
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and then, assign the detections in Ys to ground-truth boxes in X, as performed
for AP . Once making the assignments, we compute three values: (i) NTP , the
number of true positives; (ii) NFP , the number of false positives; (iii) NFN , the
number of false negatives. Using these quantities, the LRP error, LRP(X,Ys),
is defined as follows:

LRP(X,Ys) :=
1

Z
(wIoULRPIoU (X,Ys) + wFP LRPFP (X,Ys) + wFNLRPFN (X,Ys)) ,

(1)

where Z = NTP + NFP + NFN is the normalization constant; and the weights
wIoU = NTP

1−τ , wFP = |Ys|, and wFP = |X| control the contributions of the terms.
The weights make each component easy to interpret, provide further information
about the detector and prevent the total error from being undefined whenever
the denominator of a single component is 0. LRPIoU represents the IoU tightness
of valid detections as follows:

LRPIoU (X,Ys) :=
1

NTP

NTP∑

i=1

(1− IoU(xi, yxi)), (2)

which measures the mean bounding box localization error resulting from correct
detections. Another interpretation is that 1−LRPIoU (X,Ys) is the average IoU
of the valid detections.

The second component, LRPFP , in Eq. 1 measures the false-positives:

LRPFP (X,Ys) := 1− Precision = 1− NTP
|Ys|

=
NFP
|Ys|

, (3)

and false negatives are measured by LRPFN :

LRPFN (X,Ys) := 1−Recall = 1− NTP
|X| =

NFN
|X| . (4)

FP & FN components together represent precision-recall of the corresponding
Ys by 1− LRPFP (X,Ys) and 1− LRPFN (X,Ys) respectively. Denoting the IoU
between xi ∈ X and its assigned detection yxi

∈ Ys by IoU(xi, yxi
), the LRP

error can be equally defined in a more compact form as:

LRP(X,Ys) :=

(
NTP∑

i=1

1− IoU(xi, yxi
)

1− τ +NFP +NFN

)
/(NTP +NFP +NFN ).

(5)

LRP penalizes each TP by its erroneous localization normalized by 1− τ to the
[0,1] interval, each FP and FN by 1 that is the penalty upper bound. This sum of
error is averaged by the total number of its contributors, i.e., NTP +NFP +NFN .
So, with this normalization, LRP yields a value representing the average error
per bounding box in the [0,1] interval.

Overall, the ranges of total error and the components are [0, 1] and lower
value implies better performance. At the extreme cases; 0 for LRP means that
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each ground truth item is detected with perfect localization, and if LRP is 1,
then no valid detection matches the ground truth (i.e., |Ys| = NFP ). LRP is
undefined only when the ground truth and detection sets are both empty (i.e.,
NTP +NFP +NFN = 0), i.e., there is nothing to evaluate.

As for the parameters, s is the confidence score threshold, and τ is the IoU
threshold. Since the RP pair is directly identified by the FP&FN components,
each different detection set Ys corresponds to a specific point of the RP curve.
For this reason, decreasing s corresponds to moving along the RP curve in the
positive recall direction. τ defines minimum overlap for a detection to be vali-
dated as a TP. In other words, higher τ means we require tighter BBs. Overall,
both parameters are related with the RP curve: A τ value corresponds to draw-
ing the RP curve and an s value determines a point on the RP curve to evaluate
in terms of the LRP error.

In the supplementary material, we prove that LRP is a metric.

5 Optimal LRP (oLRP) Error: The Performance Metric
and Thresholder

Optimal LRP (oLRP) is defined as the minimum achievable LRP error with
τ = 0.5, which makes oLRP parameter independent:

oLRP := min
s

LRP(X,Ys). (6)

For ablation studies and practical requirements, different τ values can be adopted.
In such cases, oLRP@τ can be used to denote the Optimal LRP error at τ .

oLRP searches among the confidence scores to find the best balance for com-
peting precision-recall-IoU. The RP setting of the RP curve that oLRP has found
corresponds to the top-right part of the curve, where the optimal balanced set-
ting resides. We call a curve sharper than another RP curve, if its peak point at
the top-right part is nearer to the (1, 1) RP pair. To illustrate, the RP curves in
Fig. 1(d) and 1(e) are sharper than that in Fig. 1(f).

The components of oLRP are coined as optimal box localization (oLRPIoU ),
optimal FP (oLRPFP ), and optimal FN (oLRPFN ) components. In this case,
oLRPIoU describes the mean average tightness for a class, and oLRPFP and
oLRPFN together pertain to the sharpness of the curve since the corresponding
RP pair is the maximum achievable performance value of the detector for this
class. One can directly pinpoint the sharpness point by 1 − oLRPFP and 1 −
oLRPFN . Overall, different from AP, oLRP aims to find out the best class specific
setting of the detector and it favors sharper ones that also represent better BB
tightness.

Denoting oLRP error of class c ∈ C by oLRPc, Mean Optimal LRP (moLRP)
is defined as follows:

moLRP :=
1

|C|
∑

c∈C
oLRPc. (7)

As in mAP, moLRP is the performance metric for the entire detector. Mean opti-
mal box localization, FP and FN components, denoted by moLRPIoU , moLRPFP ,
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moLRPFN respectively, are similarly defined as the mean of the class specific
components. Different from the components in oLRP, the mean optimal FP and
FN components are not necessarily on the average of the RP curves of all classes
due to averaging moLRPFP (i.e., precision) with different moLRPFN (i.e., re-
call) values but still provides information on the sharpness of the RP curves as
shown in the experiments.

Owing to its filtering capability, oLRP can be used for thresholding purposes.
If a problem needs an image object detector as the backbone and processing is
to be completed within limited time, then only a small subset of the detections
should be selected. For such methods, using an overall confidence score for the
object detector is a common approach [12]. For such a task, oLRP identifies
the class-specific best confidence score thresholds. One possible drawback of this
method is that validated detections can still be too large to be processed in the
desired limited time. However, by accepting larger LRP errors, higher confidence
scores can be set, but again in a class-specific manner. Second practical usage of
oLRP is about the deployment of the devised object detector into a platform in
which confidence scores are to be discarded for user-friendliness. In such a case,
one needs to set the τ threshold considering the application requirements while
optimizing for the best confidence score.

In essence, calculating oLRP is an optimization problem. However, thanks to
the smaller search space, we propose to discretize the s domain into 0.01 spaced
intervals and search exhaustively in this limited space.

6 Experimental Evaluation

In this section, we analyze the parameters of LRP, represent its discrimina-
tive power on common object detectors and finally show that the class specific
thresholds increase the performance of a simple online video object detector.

Evaluated Object Detectors: We evaluate commonly used deep object
detectors; namely, Faster R-CNN, RetinaNet, and SSD. For Faster R-CNN and
RetinaNet variants, we use the models by [34] and for SSD variants, the models of
[35] are utilized. For the variants, we use R50, R101 and X101 while referring to
the ResNet-50, ResNet-101 and RexNeXt-101 backbones respectively and FPN
for feature pyramid network. All models are tested on “MS COCO validation
2017” including 80 classes and 5000 images.
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Fig. 2: For each class, LRP components & total error of Faster R-CNN (X101+FPN)
are plotted against s. The optimal confidence scores are marked with crosses. [Best
viewed in color]
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6.1 Analyzing Parameters s and τ

Using Faster R-CNN (X101+FPN) results of the first 10 classes and mean-error
for clarity, the effects of the s and τ are analyzed in Fig. 2 and 3. We observe
that box localization component is not significantly affected by increasing s,
except for large s, where the error slightly decreases since the results tend to be
more “confident”. FP and FN components act in contrast to precision and recall
respectively, as expected. Therefore, lower curves imply better performance for
these components. Finally, the total error (oLRP) has a second-order shape.
Since the localization error is not affected significantly by s, the behavior of the
total error is mainly determined by FP and FN components, which result in the
global minima of the total error to have a good precision and recall balance.

In Fig. 3, oLRP and moLRP are plotted against different τ values. As ex-
pected, larger τ values imply lower the box localization component (oLRPIoU).
On the other hand, increase τ causes FP and FN components to increase rapidly,
leading to higher total error (oLRP). This is intuitive since at the extreme case,
i.e., when τ = 1, there are hardly any valid detections and all the detections
are false positives, which makes oLRP to be approximately 1. Therefore, oLRP
allows measuring the performance of a detector designed for an application that
requires a different τ by also providing additional information. In addition, in-
vestigating oLRP for different τ values represents a good extension for ablation
studies.
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Fig. 3: For each class, oLRP and its components for Faster R-CNN (X101+FPN) are
plotted against τ . The mean represents the mean of 80 classes. [Best viewed in color]

6.2 Evaluating Common Image Object Detectors

Table 1: Performance comparison of common object detectors. R50, R101 and X101
represent the backbone networks used by ResNet-50, ResNet-101 and RexNeXt-101,
respectively, and FPN refers to the feature pyramid network. s∗min and s∗max denote
minimum and maximum class-specific thresholds respectively for oLRP.

mAP mAP@0.5 moLRP moLRPIoU moLRPFP moLRPFN s∗min s∗max

SSD-300 0.161 0.383 0.854 0.281 0.403 0.622 0.05 0.53
SSD-512 0.284 0.481 0.763 0.202 0.331 0.549 0.08 0.63
Faster R-CNN (R50) 0.348 0.557 0.714 0.183 0.292 0.484 0.18 0.93
RetinaNet (R50+FPN) 0.357 0.547 0.711 0.169 0.293 0.503 0.26 0.60
Faster R-CNN (R50+FPN) 0.379 0.593 0.689 0.175 0.259 0.454 0.41 0.94
RetinaNet (X101+FPN) 0.398 0.595 0.677 0.161 0.255 0.462 0.28 0.70
Faster R-CNN (R101+FPN) 0.398 0.613 0.673 0.168 0.255 0.436 0.37 0.94
Faster R-CNN (X101+FPN) 0.413 0.637 0.663 0.171 0.256 0.413 0.39 0.94
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General Overview: Table 1 compares the detectors using mAP as the
COCO’s standard metric, mAP@0.50, moLRP and the class-specific threshold
ranges. We observe that moLRP values are indicative of the known performances
of the detectors. For any type of the detector, each new property (i.e., includ-
ing FPN, increasing depth, using ResNext for Faster R-CNN and RetinaNet,
increasing input size to 512 for SSD) decreases moLRP as expected. Moreover,
the overall order is consistent with mAP except for RetinaNet (X101+FPN) and
Faster R-CNN (R101+FPN), which are equal in terms of mAP; however, Faster
R-CNN (R101+FPN) surpasses RetinaNet (X101+FPN) in terms of moLRP,
which is discussed below. Note that moLRPFP and moLRPFN values in Ta-
ble 1 are also consistent with the sharpness of the RP curves of the methods
as presented in Fig. 4. To illustrate, Faster R-CNN (X101+FPN) has the best
moLRPFP, moLRPFN combination, corresponding to the sharpest RP curve.
Another interesting example pertains to the RetinaNet (X101+FPN) and Faster
R-CNN (R50+FPN) curves. For these methods, moLRPFP and moLRPFN com-
parison slightly favors Faster R-CNN (R50+FPN), which is justified by their PR
curves in Fig. 4.
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RetinaNet (R50+FPN)
Faster R-CNN (R50+FPN)
RetinaNet(X101+FPN)
Faster R-CNN (R101+FPN)
Faster R-CNN (X101+FPN)

Fig. 4: Average RP curves of the common
detectors. [Best viewed in color]

Class-Based Comparison and
Interpreting the Components:
Now we analyze oLRP on a class-basis
and look at the individual compo-
nents to get a better feeling about the
characteristics of methods – see Fig.
5. For all three classes, oLRP is deter-
mined at the RP pairs where there ex-
ists a sharp precision decrease on the
top right part of the curve. Moreover,
intuitively, these pairs provide a good
balance between precision and recall.
Considering the FP and FN components, one can infer the structure of the curve.
For all methods, the “zebra” class has the sharpest RP curves which correspond
to lower FP & FN error values. For example, Faster R-CNN has 0.069 and 0.188
FP and FN error values, respectively. Thus, without looking at the curve, one
may consider that the peak of the curve resides at 1 − 0.069 = 0.931 precision
and 1− 0.188 = 0.812 recall. For the “broccoli” curve, a less sharp one, the op-
timal point is at 1− 0.498 = 0.502 and 1− 0.484 = 0.516 as precision and recall
respectively. Similar to “zebra”, these values suggest that the peak of the curve
is around the center of the RP range. The localization component (oLRPIoU)
shows that the tightness of the boxes for the “bus” class is better than that
of “zebra” for all detectors even though “zebra” has a sharper RP curve. For
RetinaNet, average IoU is 1− 0.106 = 0.894 and 1− 0.122 = 0.878 for the “bus”
and “zebra” classes respectively. With this analysis, we also see that it is easy
to compare the tightness of the boxes among the methods and classes.

Same mAP but different behaviors, Faster R-CNN vs. RetinaNet:
Now we compare two detectors with equal AP in order to identify their char-
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Fig. 5: Example RP curves representing the optimal configurations marked with crosses.
The curves are drawn for τ = 0.5. The tables in the figures represent the performance
of the methods with respect to AP and moLRP. The rows of the table correspond to
SSD-512, RetinaNet (X101+FPN) and Faster R-CNN (R101+FPN) respectively.

acteristics using the components of moLRP; namely, RetinaNet (X101+FPN),
a single shot detector and Faster R-CNN (R101+FPN), a two-step detector.
Firstly, we use the box localization component (moLRPIoU) in Table 1 to dis-
criminate between these two detectors. The standard metric used in MS COCO
aims to include the localization error by averaging over 10 mAP values. Since
1.8% difference for these two detectors is present in the mAP@0.5, one can infer
that RetinaNet seems to produce more tight boxes. However, this inference is
possible only by examining all 10 mAP results one by one and still it is not pos-
sible to quantize this tightness. In contrast, moLRPIoU directly suggests that,
among all the detectors in Table 1, RetinaNet (X101+FPN) produces the tight-
est bounding boxes with an average tightness of 1− 0.161 = 0.839 in IoU terms.

Secondly, we compare the sharpness of the same two detectors, which are
evidently different (Fig. 4). RetinaNet (X101+FPN) produces 486, 108 bounding
boxes for 36, 781 annotations, whereas Faster R-CNN (R101+FPN) yields only
127, 039 thanks to its RPN method. For RetinaNet, confidence scores of 57% of
the detections are under 0.1, and 87% of them under 0.25 (these values are 29%
and 56% for Faster R-CNN), which generally causes RetinaNet to have lower
or equal precision than Faster R-CNN throughout the recall domain except for
the tail of the RP curve. In the tail of RetinaNet, owing to its large number
of results, it has some precision even though that of Faster R-CNN drops to 0.
Fig. 5 illustrates this phenomenon, which is best observed in the “zebra” curve.
In this curve, even though RetinaNet has higher AP than Faster R-CNN with
0.899 to 0.880, this AP difference originates from the large number of RetinaNet
detections, which causes the better RP curve tail. This shallow curve-longer
tail phenomenon is observed to be more or less valid for more than 50 classes
including the ones in Fig. 6. On the other hand, oLRP and thus moLRP do
not favor these kind of detectors but the sharper ones as shown in Fig. 5, which
causes Faster R-CNN (R101+FPN) to have lower Optimal LRP error for “zebra”
class.
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Overall, even though RetinaNet has the best bounding box localization,
Faster R-CNN (R101+FPN) with the same AP has lower mean oLRP error.
Moreover, considering the RP curve of these variants, Faster R-CNN is sharper
than RetinaNet as shown in Fig. 4. This is also validated by the components
with nearly equal moLRPFP and difference in moLRPFN in favor of Faster R-
CNN. Similarly, both moLRPFP and moLRPFN for RetinaNet (R50+FPN) are
greater than those of Faster R-CNN (R50) due to the same shallow curve-longer
tail phenomenon, preventing its RP curves to be sharper. Again, what makes
RetinaNet (R50+FPN) to have better performance regarding both mAP and
moLRP is its strength to produce tight bounding boxes as shown in Table 1.

6.3 Better Threshold, Better Performance

In this experiment, we demonstrate a use-case where oLRP helps us to set class-
specific optimal thresholds such that the performance is increased compared to
the naive approach of using a general threshold for all classes. To this end, we
developed a simple, online video object detection framework where we use an off-
the-shelf still-image object detector (RetinaNet-50 [7] trained on MS-COCO [1])
and built three different versions of the video object detector. The first version,
denoted with B, uses the still-image object detector to process each frame of
the video independently. The second and third versions, denoted with G and
S, respectively, again use the still-image object detector to process each frame
and in addition, they link bounding boxes across subsequent frames using the
Hungarian matching algorithm [36] and update the scores of these linked boxes
using a simple Bayesian rule (details of this simple online video object detector
is given in the Supplementary Material). The only difference between G and S
is that while G uses a validated threshold of 0.5 (see s∗ of B in Table 2 and Fig.
1 in Supplementary Material for validation) as the confidence score threshold
for all classes, S uses the optimal threshold per class which achieves the oLRP
error. We test these three detectors on 346 videos of ImageNet VID validation
set [2] for 15 object classes which also happen to be included in MS COCO.
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Fig. 6: Example RP curves of the methods. Optimal RP pairs are marked with crosses.
[Best viewed in color]

AP vs. oLRP: We compare G with B in order to represent the evaluation
perspectives of AP and oLRP – see Fig. 6 and Table 2. Since B is a conventional
object detector, with conventional RP curves as illustrated in Fig. 6. On the
other hand, in order to be faster, G ignores some of the detections causing its



LRP: A New Performance Metric for Object Detection 13

maximum recall to be less than that of B. Thus, these shorter ranges in the
recall set a big problem in the AP evaluation. Quantitatively, B surpasses G by
7.5% AP. On the other hand, despite limited recall coverage, G obtains higher
precision than B especially through the end of its RP curve. To illustrate, for the
“boat” class in Fig. 6, G has significantly better precision after approximately
between 0.5 and 0.9 recall even though its AP is lower by 6%. Since oLRP
compares methods concerning their best configurations (i.e. the peak of their
RP curves), this difference is clearly addressed comparing their oLRP error in
which G surpasses S by 4.1%. Furthermore, the superiority of G is shown to be
its higher precision since FN components of G and S are very close while FP
component of G is 8.6% better, which is also the exact difference of precisions
in their peaks of RP curves.

Therefore, while G seems to have very low performance in terms of AP, for
12 classes G reaches better peaks than B as illustrated by the oLRP values in
Table 2. This suggests that oLRP is better than AP in capturing the performance
details of the methods.

Table 2: Comparison among B, G, S with respect to AP & oLRP and their best class-
specific configurations. The mean of class thresholds are assigned as N/A since the
thresholds are set class-specific and the mean is not used.
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A
P

B 0.681 0.630 0.547 0.565 0.555 0.587 0.463 0.601 0.661 0.473 0.602 0.561 0.713 0.829 0.816 0.619

G 0.621 0.445 0.492 0.398 0.417 0.510 0.416 0.568 0.588 0.441 0.571 0.547 0.600 0.769 0.765 0.544

S 0.645 0.535 0.500 0.485 0.419 0.492 0.434 0.569 0.589 0.444 0.573 0.545 0.609 0.792 0.782 0.561

o
L
R
P

B 0.627 0.776 0.718 0.702 0.759 0.692 0.728 0.700 0.625 0.723 0.692 0.677 0.583 0.594 0.436 0.669

G 0.606 0.783 0.691 0.727 0.758 0.679 0.714 0.697 0.614 0.699 0.654 0.648 0.586 0.553 0.432 0.656

S 0.603 0.762 0.687 0.688 0.759 0.678 0.712 0.697 0.613 0.701 0.655 0.649 0.583 0.551 0.425 0.651

o
L
R
P
Io

U B 0.182 0.271 0.169 0.177 0.207 0.145 0.166 0.203 0.170 0.155 0.192 0.154 0.159 0.199 0.128 0.179

G 0.181 0.258 0.170 0.160 0.207 0.151 0.165 0.200 0.170 0.160 0.195 0.155 0.156 0.195 0.128 0.177

S 0.186 0.270 0.170 0.173 0.207 0.148 0.170 0.200 0.170 0.160 0.194 0.155 0.159 0.197 0.131 0.179

o
L
R
P
F
P B 0.080 0.228 0.300 0.203 0.303 0.224 0.242 0.248 0.095 0.246 0.158 0.141 0.099 0.163 0.034 0.184

G 0.006 0.116 0.174 0.137 0.311 0.218 0.229 0.279 0.071 0.221 0.049 0.078 0.091 0.077 0.016 0.142

S 0.087 0.226 0.184 0.193 0.320 0.182 0.269 0.283 0.075 0.231 0.084 0.078 0.110 0.089 0.030 0.163

o
L
R
P
F
N B 0.383 0.427 0.478 0.477 0.499 0.504 0.533 0.394 0.395 0.540 0.448 0.494 0.344 0.224 0.220 0.424

G 0.359 0.523 0.480 0.571 0.493 0.473 0.512 0.372 0.388 0.494 0.415 0.467 0.360 0.221 0.227 0.424

S 0.326 0.389 0.489 0.461 0.488 0.490 0.480 0.369 0.385 0.493 0.406 0.468 0.339 0.203 0.202 0.398

s
∗

B 0.38 0.31 0.44 0.27 0.49 0.61 0.42 0.49 0.49 0.52 0.45 0.51 0.41 0.45 0.31 N/A

G 0 0.69 0.97 0.68 0 0.96 0.48 0.70 0.33 0.64 0.60 0.84 0.59 0.90 0 N/A

S 0 0.54 0.98 0.45 0 0.91 0.49 0.64 0.39 0.58 0.63 0.85 0.55 0.89 0.54 N/A

Effect of the Class-specific Thresholds: Compared to G, owing to the
class-specific thresholds, S has 2.3% better mAP and 0.6% better moLRP as
shown in Table 2. However, since the mean is dominated by s∗ around 0.5, it is
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better to focus on classes with low or high s∗ values in order to grasp the effect
of the approach. The “bus” class has the lowest s∗ with 0.27. For this class, S
surpasses G by 8.7% in AP and 4.1% in oLRP. This performance increase is also
observed for other classes with very low thresholds, such as “airplane”, “bicycle”
and “zebra”. For these classes with lower thresholds, the effect of class-specific
threshold on the RP curve is to stretch the curve in the recall domain (maybe by
accepting some loss in precision) as shown in the “bus” example in Fig. 6. Not
surprisingly, “cow” is one of the two classes for which AP of S is lower since its
threshold is the highest and thereby causing recall to be more limited. On the
other hand, regarding oLRP, the result is not worse since this time the RP curve
is stretched through the positive precision, as shown in Fig. 6, allowing better
FP errors. Thus, in any case, lower or higher, the threshold setting method aims
to discover the best RP curve. There are four classes in total for which G is
better than S in terms of oLRP. However, note that the maximum difference
is 0.2% in oLRP and these are the classes with thresholds around 0.5. These
suggest that choosing class-specific thresholds rather than the common general
thresholding approach increases the performance of the detector especially for
classes with low or high class-specific thresholds.

7 Discussion and Conclusion

We have introduced a novel performance metric, LRP, and the best LRP value
as Optimal LRP that have significant practical applications, compared to AP:

Optimal LRP captures the behaviour of the detector. As illustrated in
Fig. 1, LRP addresses the weaknesses/strengths of the detectors by representing
both the peak values of the RP curves and their localization capability.

Since LRP filters the detections lower than s, confidence scores
affect LRP with its s parameter. This parameter dependency is discarded
in Optimal LRP by identifying the best confidence score.

Optimal LRP compares different detectors and the different con-
figurations of the same detector considering practical applications. To
illustrate, the total error of detectors in Fig. 1(a), (b), (c) are 0.5, 0.5 and 0.93
respectively. Since the detector (c) has both of the problems of detector (a) and
detector (b) also with a significant BB tightness problem, it has the highest
oLRP. Even if the detector (c) had the perfect localisation as (a) and (b), total
error would be 0.66, again the worst due to both precision and recall problems.
Also, the best configurations of the detectors in Fig. 1 are identified by Optimal
LRP and marked on each RP curve.

1−oLRPIoU defines the mean box localization accuracy of a detector.
For this reason, it alleviates estimating the AP@τ with different τ values.

Optimal LRP error can even evaluate the detection result on a
single image without any interpolation.

Supplementary Material: The paper is accompanied by supplementary
material, containing a detailed definition of AP, a result on the distribution of
confidence thresholds, a description of the online detector and the proof that
LRP is a metric.
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1 Definition of AP

AP is simply defined as the area under the recall-precision (RP) curve. For
completeness, a description of how the RP curve is obtained follows. First, the
object detector is run over the testing images and returns a list of bounding
boxes with associated confidence scores. These scores are compared to a specific
threshold T and the boxes having scores larger than T are considered the object
detector’s prediction about the presence and location of the objects. A predicted
box P is deemed a“true positive” if there is a ground truth box G such that the
intersection area of P and G divided by the union area of P and G is larger
than a given intersection-over-union (IoU) threshold (which is typically set to
0.5). Otherwise, P is deemed a “false positive.” Next, recall and precision are
computed for the specific threshold T. Recall is the hit rate, the number of true
positives divided by the number of all ground truth boxes in the testing set.
Precision is the number of true positives divided by the number of all predicted
boxes (i.e., the sum of true positives and false positives). By systematically
varying the value of T , one obtains a recall-precision curve. The area under this
curve is called “average precision” (AP). It can take values in the range [0, 1].
To report the performance over many object classes, AP is computed per class
and then they are averaged to yield the “mean average precision” or “mAP” for
short.

2 Analysis of Threshold Distributions

Considering the distributions of the class-specific thresholds in Figure 1 and s∗min

and s∗max, the minimum and maximum class-specific thresholds respectively in
Table 1, the range of these thresholds is shown to be significantly large and
varying. These observations lead to two results: Firstly, for different types of
detectors, the meaning of the confidence scores are different. For example, the
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most confident settings of SSD-512 accumulated around 0.3 whereas for Faster R-
CNN, it is around 0.7 as shown in Figure 1. Secondly, setting a specific threshold
for the entire detector affects each of the classes very differently. For the classes
with lower optimal thresholds, the detector may very seldom produce their re-
sults, while for the classes with larger thresholds, there are many FPs. Thus, we
conclude that the thresholds of the detector are to be set accordingly for each
class.
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Fig. 1: The histograms representing the distributions of the class-specific thresholds for
different methods.

3 A Simple Online Video Object Detector

There are two online video object detectors: G and S which respectively use
the general thresholding approach with 0.5 as threshold, and the class-specific
thresholds. For each of the online detectors, at each time interval, the detection
BBs of previous and current frames are associated using the Hungarian algorithm
[1] considering a box linking function and the confidence scores of associated
BBs of the current frame are updated using the score distributions of both of
the BBs. Since an online tracker, specifically [2], is also used in our method, we
use the L1 norm of the difference of confidence score distributions of neighboring
frames and the IoU overlap of the tracker prediction and the detection at current
frame. While choosing this box linking score, we inspired from the tube linking
score of [3]. The updated score is estimated using the Bayes Theorem such that
the prior is the updated tubelet score in the previous frame and likelihood is
the currently associated high confidence detection with that tubelet. In such an
update method, even though the updated scores converge to 1 quickly, which
is bad for lower recall, precision increases in larger recall portions. Also, we
call a BB as “dominant object” if its updated score increases by 0.2. In order to
increase the recall, the disappearance of a “dominant object” is closely inspected
by using the tracker again to predict the possible location, then the cropped
region is classified by class-wise binary classifiers (object vs. background).



LRP: A New Performance Metric for Object Detection 3

4 Proof that LRP is a Metric

In this section, we prove that LRP is a metric using a reduction from DASA [4],
a proven metric. Firstly, Theorem 1 proves that 1− IoU(x, y) is a metric, which
is a requirement for metricity of LRP.

Theorem 1. 1− IoU(x, y) is a metric.

Proof. The identity and symmetry axioms are trivial. Triangle inequality is de-
fined in Equation 1 and reorganized in Equation 2, which is a fact for any
arbitrary BBs x, y, z.

1− IoU(x, y) ≤ 1− IoU(x, z) + 1− IoU(z, y) (1)

IoU(x, z) + IoU(z, y)− IoU(x, y) ≤ 1 (2)

Theorem 2. LRP is a metric.

Proof. We show that, LRP is derived from DASA [4], a proven metric. Including
a norm parameter p, a cutoff parameter c DASA is defined in Equation 3. We
denote an arbitrary metric by d(xi, yxi

) and l = max(|X|, |Y |).

ē(c)p (X,Y ) := (3)

l

Z


NTP

l


 1

NTP

|Y |∑

i=1

I[d(xi, yxi
) ≤ c]d(xi, yxi

)p


+

(
cpNFP

l

)
+

(
cpNFN

l

)


1/p

Setting p = 1, c = 1− τ and d(xi, yxi
) = 1− IoU(xi, yxi

) thanks to Theorem 1;

=
l

Z


NTP

l


 1

NTP

|Y |∑

i=1

I[1− IoU(xi, yxi
)) ≥ 1− τ ](1− IoU(xi, yxi

)))


 (4)

+

(
(1− τ)NFP

l

)
+

(
(1− τ)NFN

l

))

Reorganizing the predicate in the Iverson bracket, we have IoU(xi, yxi
)) ≤ τ ,

which exactly defines the validation limit of the TPs. Finally, In Equation 5,
the LRP metric is derived by discarding the Iverson bracket by setting the sum-
mation upper bound to NTP for clarity, proposing component weights (wIoU ,
wFP , wFN ) to make them easily interpretable and normalizing the total metric
by 1− τ to set the upper bound to 1. Note that, dividing by a constant does not
violate metricity. Thus, since LRP is reduced from DASA, it is also a metric.

=
1

Z

(
wIoU

1

NTP

NTP∑

i=1

(1− IoU(xi, yxi)) + wFP
NFP

|Ys|
+ wFN

NFN

|X|

)
(5)

=LRP(X,Y ) (6)
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