74 research outputs found
FLASH free-electron laser single-shot temporal diagnostic: terahertz-field-driven streaking
We report on the commissioning of a terahertz (THz) field driven streak camera installed at the free-electron laser FLASH at DESY in Hamburg, being able to deliver the photon pulse duration as well as the arrival time information with around 10 fs resolution for each single XUV FEL pulse. Pulse durations between 300 fs and <15 fs have been measured for different FLASH FEL settings. A comparison between the XUV pulse arrival time and the FEL electron bunch arrival time measured at the FLASH linac section - exhibit a correlation width of 20 fs rms, thus demonstrating the excellent operation stability of FLASH. In addition, the THz streaking setup was operated simultaneously to an alternative method to determine the FEL pulse duration based on spectral analysis. FLASH pulse duration, derived from simple spectral analysis, are in good agreement with that from THz streaking measurement
Unsupervised real-world knowledge extraction via disentangled variational autoencoders for photon diagnostics
We present real-world data processing on measured electron time-of-flight
data via neural networks. Specifically, the use of disentangled variational
autoencoders on data from a diagnostic instrument for online wavelength
monitoring at the free electron laser FLASH in Hamburg. Without a-priori
knowledge the network is able to find representations of single-shot FEL
spectra, which have a low signal-to-noise ratio. This reveals, in a directly
human-interpretable way, crucial information about the photon properties. The
central photon energy and the intensity as well as very detector-specific
features are identified. The network is also capable of data cleaning, i.e.
denoising, as well as the removal of artefacts. In the reconstruction, this
allows for identification of signatures with very low intensity which are
hardly recognisable in the raw data. In this particular case, the network
enhances the quality of the diagnostic analysis at FLASH. However, this
unsupervised method also has the potential to improve the analysis of other
similar types of spectroscopy data
New insights into the laser-assisted photoelectric effect from solid-state surfaces
Photoemission from a solid surface provides a wealth of information about the
electronic structure of the surface and its dynamic evolution. Ultrafast
pump-probe experiments are particularly useful to study the dynamic
interactions of photons with surfaces as well as the ensuing electron dynamics
induced by these interactions. Time-resolved laser-assisted photoemission
(tr-LAPE) from surfaces is a novel technique to gain deeper understanding of
the fundamentals underlying the photoemission process. Here, we present the
results of a femtosecond time-resolved soft X-ray photoelectron spectroscopy
experiment on two different metal surfaces conducted at the X-ray Free-Electron
Laser FLASH in Hamburg. We study photoemission from the W 4f and Pt 4f core
levels using ultrashort soft X-ray pulses in combination with synchronized
infrared (IR) laser pulses. When both pulses overlap in time and space,
laser-assisted photoemission results in the formation of a series of sidebands
that reflect the dynamics of the laser-surface interaction. We demonstrate a
qualitatively new level of sideband generation up to the sixth order and a
surprising material dependence of the number of sidebands that has so far not
been predicted by theory. We provide a semi-quantitative explanation of this
phenomenon based on the different dynamic dielectric responses of the two
materials. Our results advance the understanding of the LAPE process and reveal
new details of the IR field present in the surface region, which is determined
by the dynamic interplay between the IR laser field and the dielectric response
of the metal surfaces.Comment: 18 pages, 3 figure
Recommended from our members
Element-specific magnetization dynamics of complex magnetic systems probed by ultrafast magneto-optical spectroscopy
The vision to manipulate and control magnetism with light is driven on the one hand by fundamental questions of direct and indirect photon-spin interactions, and on the other hand by the necessity to cope with ever growing data volumes, requiring radically new approaches on how to write, read and process information. Here, we present two complementary experimental geometries to access the element-specific magnetization dynamics of complex magnetic systems via ultrafast magneto-optical spectroscopy in the extreme ultraviolet spectral range. First, we employ linearly polarized radiation of a free electron laser facility to demonstrate decoupled dynamics of the two sublattices of an FeGd alloy, a prerequisite for all-optical magnetization switching. Second, we use circularly polarized radiation generated in a laboratory-based high harmonic generation setup to show optical inter-site spin transfer in a CoPt alloy, a mechanism which only very recently has been predicted to mediate ultrafast metamagnetic phase transitions. © 2020 by the authors. Licensee MDPI, Basel, Switzerland
Single-shot temporal characterization of XUV pulses with duration from ~10 fs to ~350 fs at FLASH
Ultra-short extreme ultraviolet pulses from the free-electron laser FLASH are characterized using terahertz-field driven streaking. Measurements at different ultra-short extreme ultraviolet wavelengths and pulse durations as well as numerical simulations were performed to explore the application range and accuracy of the method. For the simulation of streaking, a standard classical approach is used which is compared to quantum mechanical theory, based on strong field approximation. Various factors limiting the temporal resolution of the presented terahertz streaking setup are investigated and discussed. Special attention is paid to the cases of very short (similar to 10 fs) and long (up to similar to 350 fs) pulses.We want to acknowledge the work of the scientific and technical team at FLASH. NMK acknowledges the hospitality and financial support from DESY and from the theory group in cooperation with the SQS research group of the European XFEL (Hamburg). KW and MD acknowledge support by the SFB925-A1. UF and AD acknowledge support by the excellence cluster `The Hamburg Center for Ultrafast Imaging-Structure, Dynamics and Control of Matter at the Atomic Scale' (DFG)-EXC 1074 project ID 194651731. SW acknowledges support by the DFG Forschergruppe FOR 1789.
Editoria
THz streak camera performance for single-shot characterization of XUV pulses with complex temporal structures
The THz-field-driven streak camera has proven to be a powerful diagnostic-technique that enables the shot-to-shot characterization of the duration and the arrival time jitter of free electron laser (FEL) pulses. Here we investigate the performance of three computational approaches capable to determine the duration of FEL pulses with complex temporal structures from single-shot measurements of up to three simultaneously recorded spectra. We use numerically simulated FEL pulses in order to validate the accuracy of the pulse length retrieval in average as well as in a single-shot mode. We discuss requirements for the THz field strength in order to achieve reliable results and compare our numerical study with the analysis of experimental data that were obtained at the FEL in Hamburg - FLASH. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen
Electronic Quantum Coherence in Glycine Molecules Probed with Ultrashort X-ray Pulses in Real Time
Structural changes in nature and technology are driven by charge carrier
motion. A process such as charge-directed reactivity that can be operational in
radiobiology is more efficient, if energy transfer and charge motion proceeds
along well-defined quantum mechanical pathways keeping the coherence and
minimizing dissipation. The open question is: do long-lived electronic quantum
coherences exist in complex molecules? Here, we use x-rays to create and
monitor electronic wave packets in the amino acid glycine. The outgoing
photoelectron wave leaves behind a positive charge formed by a superposition of
quantum mechanical eigenstates. Delayed x-ray pulses track the induced
electronic coherence through the photoelectron emission from the sequential
double photoionization processes. The observed sinusoidal modulation of the
detected electron yield as a function of time clearly demonstrates that
electronic quantum coherence is preserved for at least 25 femtoseconds in this
molecule of biological relevance. The surviving coherence is detected via the
dominant sequential double ionization channel, which is found to exhibit a
phase shift as a function of the photoelectron energy. The experimental results
agree with advanced ab-initio simulations.Comment: 54 pages, 11 figure
Recommended from our members
XUV double-pulses with femtosecond to 650 ps separation from a multilayer-mirror-based split-and-delay unit at FLASH
Extreme ultraviolet (XUV) and X-ray free-electron lasers enable new scientific opportunities. Their ultra-intense coherent femtosecond pulses give unprecedented access to the structure of undepositable nanoscale objects and to transient states of highly excited matter. In order to probe the ultrafast complex light-induced dynamics on the relevant time scales, the multi-purpose end-station CAMP at the free-electron laser FLASH has been complemented by the novel multilayer-mirror-based split-and-delay unit DESC (DElay Stage for CAMP) for time-resolved experiments. XUV double-pulses with delays adjustable from zero femtoseconds up to 650 picoseconds are generated by reflecting under near-normal incidence, exceeding the time range accessible with existing XUV split-and-delay units. Procedures to establish temporal and spatial overlap of the two pulses in CAMP are presented, with emphasis on the optimization of the spatial overlap at long time-delays via time-dependent features, for example in ion spectra of atomic clusters
Recommended from our members
CAMP@FLASH: an end-station for imaging, electron- and ion-spectroscopy, and pump–probe experiments at the FLASH free-electron laser
The non-monochromatic beamline BL1 at the FLASH free-electron laser facility at DESY was upgraded with new transport and focusing optics, and a new permanent end-station, CAMP, was installed. This multi-purpose instrument is optimized for electron- and ion-spectroscopy, imaging and pump–probe experiments at free-electron lasers. It can be equipped with various electron- and ion-spectrometers, along with large-area single-photon-counting pnCCD X-ray detectors, thus enabling a wide range of experiments from atomic, molecular, and cluster physics to material and energy science, chemistry and biology. Here, an overview of the layout, the beam transport and focusing capabilities, and the experimental possibilities of this new end-station are presented, as well as results from its commissioning
- …