663 research outputs found
Unprecedented studies of the low-energy negatively charged kaons interactions in nuclear matter by AMADEUS
The AMADEUS experiment aims to provide unique quality data of hadronic
interactions in light nuclear targets, in order to solve fundamental open
questions in the non-perturbative strangeness QCD sector, like the
controversial nature of the state, the yield of hyperon
formation below threshold, the yield and shape of multi-nucleon
absorption, processes which are intimately connected to the possible existence
of exotic antikaon multi-nucleon clusters. AMADEUS takes advantage of the
DANE collider, which provides a unique source of monochromatic
low-momentum kaons and exploits the KLOE detector as an active target, in order
to obtain excellent acceptance and resolution data for nuclear capture on
H, He, Be and C, both at-rest and in-flight. During the
second half of 2012 a successful data taking was performed with a dedicated
pure carbon target implemented in the central region of KLOE, providing a high
statistic sample of pure at-rest nuclear interactions. For the future
dedicated setups involving cryogenic gaseous targets are under preparation.Comment: 14 pages, 6 figure
Application of photon detectors in the VIP2 experiment to test the Pauli Exclusion Principle
The Pauli Exclusion Principle (PEP) was introduced by the austrian physicist
Wolfgang Pauli in 1925. Since then, several experiments have checked its
validity. From 2006 until 2010, the VIP (VIolation of the Pauli Principle)
experiment took data at the LNGS underground laboratory to test the PEP. This
experiment looked for electronic 2p to 1s transitions in copper, where 2
electrons are in the 1s state before the transition happens. These transitions
violate the PEP. The lack of detection of X-ray photons coming from these
transitions resulted in a preliminary upper limit for the violation of the PEP
of . Currently, the successor experiment VIP2 is under
preparation. The main improvements are, on one side, the use of Silicon Drift
Detectors (SDDs) as X-ray photon detectors. On the other side an active
shielding is implemented, which consists of plastic scintillator bars read by
Silicon Photomultipliers (SiPMs). The employment of these detectors will
improve the upper limit for the violation of the PEP by around 2 orders of
magnitude
VIP 2: Experimental tests of the Pauli Exclusion Principle for electrons
The Pauli Exclusion Principle (PEP) was famously discovered in 1925 by the
austrian physicist Wolfgang Pauli. Since then, it underwent several
experimental tests. Starting in 2006, the VIP (Violation of the Pauli
Principle) experiment looked for 2p to 1s X-ray transitions in copper, where 2
electrons are present in the 1s state before the transition happens. These
transitions violate the PEP, and the lack of detection of the corresponding
X-ray photons lead to a preliminary upper limit for the violation of the PEP of
4.7 * 10^(-29). The follow-up experiment VIP 2 is currently in the testing
phase and will be transported to its final destination, the underground
laboratory of Gran Sasso in Italy, in autumn 2015. Several improvements
compared to its predecessor like the use of new X-ray detectors and active
shielding from background gives rise to a goal for the improvement of the upper
limit of the probability for the violation of the Pauli Exclusion Principle of
2 orders of magnitude
Strong interaction studies with kaonic atoms
The strong interaction of antikaons (K-) with nucleons and nuclei in the low
energy regime represents an active research field connected intrinsically with
few-body physics. There are important open questions like the question of
antikaon nuclear bound states - the prototype system being K-pp. A unique and
rather direct experimental access to the antikaon-nucleon scattering lengths is
provided by precision X-ray spectroscopy of transitions in low-lying states of
light kaonic atoms like kaonic hydrogen isotopes. In the SIDDHARTA experiment
at the electron-positron collider DA?NE of LNF-INFN we measured the most
precise values of the strong interaction observables, i.e. the strong
interaction on the 1s ground state of the electromagnetically bound K-p atom
leading to a hadronic shift and a hadronic broadening of the 1s state. The
SIDDHARTA result triggered new theoretical work which achieved major progress
in the understanding of the low-energy strong interaction with strangeness.
Antikaon-nucleon scattering lengths have been calculated constrained by the
SIDDHARTA data on kaonic hydrogen. For the extraction of the isospin-dependent
scattering lengths a measurement of the hadronic shift and width of kaonic
deuterium is necessary. Therefore, new X-ray studies with the focus on kaonic
deuterium are in preparation (SIDDHARTA2). Many improvements in the
experimental setup will allow to measure kaonic deuterium which is challenging
due to the anticipated low X-ray yield. Especially important are the data on
the X-ray yields of kaonic deuterium extracted from a exploratory experiment
within SIDDHARTA.Comment: Proc. Few Body 21, 4 pages, 2 figure
Searches for the Violation of Pauli Exclusion Principle at LNGS in VIP(-2) experiment
The VIP (Violation of Pauli exclusion principle) experiment and its follow-up
experiment VIP-2 at the Laboratori Nazionali del Gran Sasso (LNGS) search for
X-rays from Cu atomic states that are prohibited by the Pauli Exclusion
Principle (PEP). The candidate events, if they exist, will originate from the
transition of a orbit electron to the ground state which is already
occupied by two electrons. The present limit on the probability for PEP
violation for electron is 4.7 set by the VIP experiment. With
upgraded detectors for high precision X-ray spectroscopy, the VIP-2 experiment
will improve the sensitivity by two orders of magnitude.Comment: 5 pages, 3 figures, 1 table. Conference proceedings for oral
presentation at TAUP 2015, Torin
Testing the Pauli Exclusion Principle for electrons at LNGS
High-precision experiments have been done to test the Pauli exclusion
principle (PEP) for electrons by searching for anomalous -series X-rays from
a Cu target supplied with electric current. With the highest sensitivity, the
VIP (VIolation of Pauli Exclusion Principle) experiment set an upper limit at
the level of for the probability that an external electron captured
by a Cu atom can make the transition from the 2 state to a 1 state
already occupied by two electrons. In a follow-up experiment at Gran Sasso, we
aim to increase the sensitivity by two orders of magnitude. We show proofs that
the proposed improvement factor is realistic based on the results from recent
performance tests of the detectors we did at Laboratori Nazionali di Frascati
(LNF).Comment: 8 pages, 5 figures, conference proceedings on TAUP 201
Beyond quantum mechanics? Hunting the 'impossible' atoms (Pauli Exclusion Principle violation and spontaneous collapse of the wave function at test)
The development of mathematically complete and consistent models solving the
so-called "measurement problem", strongly renewed the interest of the
scientific community for the foundations of quantum mechanics, among these the
Dynamical Reduction Models posses the unique characteristic to be
experimentally testable. In the first part of the paper an upper limit on the
reduction rate parameter of such models will be obtained, based on the analysis
of the X-ray spectrum emitted by an isolated slab of germanium and measured by
the IGEX experiment.
The second part of the paper is devoted to present the results of the VIP
(Violation of the Pauli exclusion principle) experiment and to describe its
recent upgrade. The VIP experiment established a limit on the probability that
the Pauli Exclusion Principle (PEP) is violated by electrons, using the very
clean method of searching for PEP forbidden atomic transitions in copper
- âŠ