49 research outputs found

    Elevated Level of DNA Damage and Impaired Repair of Oxidative DNA Damage in Patients with Recurrent Depressive Disorder

    Get PDF
    Background: Depressive disorder (DD), including recurrent DD (rDD), is a severe psychological disease, which affects a large percentage of the world population. Although pathogenesis of the disease is not known, a growing body of evidence shows that inflammation together with oxidative stress may contribute to development of DD. Since reactive oxygen species produced during stress may damage DNA, we wanted to evaluate the extent of DNA damage and efficiency of DNA repair in patients with depression. Material and Methods: We measured and compared the extent of endogenous DNA damage – single- and double-strand breaks, alkali-labile sites, and oxidative damage of the pyrimidines and purines – in peripheral blood mononuclear cells isolated from rDD patients (n=40) and healthy controls (n=46) using comet assay. We also measured DNA damage evoked by hydrogen peroxide and monitored changes in DNA damage during repair incubation. Results: We found an increased number DNA breaks, alkali-labile sites, and oxidative modification of DNA bases in the patients compared to the controls. Exposure to hydrogen peroxide evoked the same increased damage in both groups. Examination of the repair kinetics of both groups revealed that the lesions were more efficiently repaired in the controls than in the patients. Conclusions: For the first time we showed that patients with depression, compared with non-depresses individuals, had more DNA breaks, alkali-labile sites, and oxidative DNA damage, and that those lesions may be accumulated by impairments of the DNA repair systems. More studies must be conducted to elucidate the role of DNA damage and repair in depression

    Experimental investigations and computer simulations to solve acoustic problems in the modern church

    Get PDF
    Architectural acoustics of contemporary sacred buildings is still an under-appreciated issue. Many contemporary churches are not functional enough due to acoustic defects which occur there. The study discusses issues of the modern Catholic church, where acoustic problems surface as high reverberant noise levels. The building under investigation, i.e. the Church of the Visitation of the Blessed Virgin Mary, is the biggest contemporary church in Poznań, Poland, as its internal volume amounts to 16,800 m³. On the basis of in situ investigations, a computer model of the church was built and a series of simulations were carried out to determine correct treatment in order to achieve satisfactory acoustic conditions. The main assumption was to find such a solution as not to affect the modernist architecture of the church

    Międzynarodowe bezpieczeństwo energetyczne w XXI wieku

    Get PDF
    Praca recenzowana / peer-reviewed pape

    Biological properties of low-toxicity PLGA and PLGA/PHB fibrous nanocomposite implants for osseous tissue regeneration. Part I: evaluation of potential biotoxicity

    Get PDF
    In response to the demand for new implant materials characterized by high biocompatibility and bioresorption, two prototypes of fibrous nanocomposite implants for osseous tissue regeneration made of a newly developed blend of poly(L-lactide-co-glycolide) (PLGA) and syntheticpoly([R,S]-3-hydroxybutyrate), PLGA/PHB, have been developed and fabricated. Afibre-forming copolymer of glycolide and L-lactide (PLGA) was obtained by a unique method of synthesis carried out in blocksusing Zr(AcAc)4 as an initiator. The prototypes of the implants are composed of three layers of PLGA or PLGA/PHB, nonwoven fabrics with a pore structure designed to provide the best conditions for the cell proliferation. The bioactivity of the proposed implants has been imparted by introducing a hydroxyapatite material and IGF1, a growth factor. The developed prototypes of implants have been subjected to a set of in vitro and in vivobiocompatibility tests: in vitro cytotoxic effect, in vitro genotoxicity and systemic toxicity. Rabbitsshowed no signs of negative reactionafter implantation of the experimental implant prototypes

    Associations between the dopamine D4 receptor gene polymorphisms and personality traits in elite athletes

    Get PDF
    Personality traits and temperament may affect sports performance. Previous studies suggest that dopamine may play an important role in behavior regulation and physical exercise performance. The aim of this study is to determine associations between dopamine D4 receptor gene (DRD4 Ex3) polymorphisms and personality traits (such as neuroticism, extraversion, openness, agreeability and conscientiousness) in elite combat athletes. A total of 302 physically active, unrelated, self-reported Caucasian participants were recruited for this study. The participants consisted of 200 elite male combat athletes and 102 healthy male participants (control group). For personality trait measurements, the NEO Five-Factor Personality Inventory (NEO-FFI) and the State-Trait Anxiety Inventory questionnaires were used. For the genetic assays, blood was collected and all samples were genotyped using the real-time PCR method. A 2 x 3 factorial ANOVA revealed statistically significant differences on the Openness NEO Five Factor Inventory scale for both examined factors, i.e. sport status and genetics DTD4 Ex3. Combat athletes achieved higher scores on the Conscientiousness NEO-FFI scale when compared to controls (7.18 vs 5.98). On the other hand, combat athletes scored lower on the Openness scale in comparison with control group (4.42 vs. 4.63). Subjects with the DRD4 Ex3 s/s genotype had lower results on the openness scale in comparison with participants with the DRD4 Ex3 s/1 genotype (4.01 vs. 4.57) and higher DRD4 Ex3 1/1 genotype (4,01 vs. 3,50). In conclusion, we found an association between the dopamine D4 receptor gene in variable number tandem repeat (VNTR) polymorphisms and athletic status for two NEO-FFI factors: Openness and Conscientiousness. The DRD4 exon 3 polymorphism may be associated with the selected personality traits in combat athletes, thereby modulating athletes’ predisposition to participate in high risk sports

    Influence of Constant Magnetic Field on Electrodeposition of CoW/Cu/CoW Composite

    Get PDF
    Magnetic field influences the process of electrolytic deposition of materials, including metal composites. Numerous studies have shown that the magnetic field interferes in the rate of deposition, surface morphology, corrosion resistance, and hardness of the obtained coatings. The purpose of the study was to investigate the effect of a constant magnetic field on the processes of electrodeposition of the gradient metallic composite CoW/ Cu/CoW, and to compare the morphology of the surface of the composite obtained in and without the involvement of a constant magnetic field. Another step to achieve the objectives was to study the giant magnetoresistance (GMR) phenomenon, involving a change in the material resistance occurring im gradient metallic composites exposed to an external magnetic field. The percentage changes of resistance in constant magnetic field of magnetic induction B = 1T were estimated for CoW/Cu/CoW composite as well as for a reference composite Fe/Cr/Fe, known from the literature.This work was supported by the University of Lodz
    corecore