12,500 research outputs found
Theoretical study of the charge transport through C60-based single-molecule junctions
We present a theoretical study of the conductance and thermopower of
single-molecule junctions based on C60 and C60-terminated molecules. We first
analyze the transport properties of gold-C60-gold junctions and show that these
junctions can be highly conductive (with conductances above 0.1G0, where G0 is
the quantum of conductance). Moreover, we find that the thermopower in these
junctions is negative due to the fact that the LUMO dominates the charge
transport, and its magnitude can reach several tens of micro-V/K, depending on
the contact geometry. On the other hand, we study the suitability of C60 as an
anchoring group in single-molecule junctions. For this purpose, we analyze the
transport through several dumbbell derivatives using C60 as anchors, and we
compare the results with those obtained with thiol and amine groups. Our
results show that the conductance of C60-terminated molecules is rather
sensitive to the binding geometry. Moreover, the conductance of the molecules
is typically reduced by the presence of the C60 anchors, which in turn makes
the junctions more sensitive to the functionalization of the molecular core
with appropriate side groups.Comment: 9 pages, 7 figure
Tuning the thermal conductance of molecular junctions with interference effects
We present an \emph{ab initio} study of the role of interference effects in
the thermal conductance of single-molecule junctions. To be precise, using a
first-principles transport method based on density functional theory, we
analyze the coherent phonon transport in single-molecule junctions based on
several benzene and oligo-phenylene-ethynylene derivatives. We show that the
thermal conductance of these junctions can be tuned via the inclusion of
substituents, which induces destructive interference effects and results in a
decrease of the thermal conductance with respect to the unmodified molecules.
In particular, we demonstrate that these interference effects manifest as
antiresonances in the phonon transmission, whose energy positions can be
controlled by varying the mass of the substituents. Our work provides clear
strategies for the heat management in molecular junctions and more generally in
nanostructured metal-organic hybrid systems, which are important to determine,
how these systems can function as efficient energy-conversion devices such as
thermoelectric generators and refrigerators
Field enhancement in subnanometer metallic gaps
Motivated by recent experiments [Ward et al., Nature Nanotech. 5, 732
(2010)], we present here a theoretical analysis of the optical response of
sharp gold electrodes separated by a subnanometer gap. In particular, we have
used classical finite difference time domain simulations to investigate the
electric field distribution in these nanojunctions upon illumination. Our
results show a strong confinement of the field within the gap region, resulting
in a large enhancement compared to the incident field. Enhancement factors
exceeding 1000 are found for interelectrode distances on the order of a few
angstroms, which are fully compatible with the experimental findings. Such huge
enhancements originate from the coupling of the incident light to the
evanescent field of hybrid plasmons involving charge density oscillations in
both electrodes.Comment: 4 pages, 3 figures, to appear in Physical Review
Chemical Bonding and Charge Distribution at Metallic Nanocontacts
We present results of electronic structure calculations for aluminium
contacts of atomic size, based on density functional theory and the local
density approximation. Addressing the atomic orbitals at the neck of the
nanocontact, we find that the local band structure deviates strongly from bulk
fcc aluminium. In particular, hybridization between Al 3s and 3p states is
fully suppressed due to directed bonds at the contact. Moreover, a charge
transfer of 0.6 electrons off the contact aluminium site is found. Both the
suppressed hybridization and the violated charge neutrality are characteristic
features of metallic nanocontacts. This fact has serious consequences for
models aiming at a microscopic description of transport properties.Comment: 6 pages, 3 figures, accepted by Chemical Physics Letter
Thresholds for breather solutions on the Discrete Nonlinear Schr\"odinger Equation with saturable and power nonlinearity
We consider the question of existence of periodic solutions (called breather
solutions or discrete solitons) for the Discrete Nonlinear Schr\"odinger
Equation with saturable and power nonlinearity. Theoretical and numerical
results are proved concerning the existence and nonexistence of periodic
solutions by a variational approach and a fixed point argument. In the
variational approach we are restricted to DNLS lattices with Dirichlet boundary
conditions. It is proved that there exists parameters (frequency or
nonlinearity parameters) for which the corresponding minimizers satisfy
explicit upper and lower bounds on the power. The numerical studies performed
indicate that these bounds behave as thresholds for the existence of periodic
solutions. The fixed point method considers the case of infinite lattices.
Through this method, the existence of a threshold is proved in the case of
saturable nonlinearity and an explicit theoretical estimate which is
independent on the dimension is given. The numerical studies, testing the
efficiency of the bounds derived by both methods, demonstrate that these
thresholds are quite sharp estimates of a threshold value on the power needed
for the the existence of a breather solution. This it justified by the
consideration of limiting cases with respect to the size of the nonlinearity
parameters and nonlinearity exponents.Comment: 26 pages, 10 figure
Interplay Between Yu-Shiba-Rusinov States and Multiple Andreev Reflections
Motivated by recent scanning tunneling microscopy experiments on single
magnetic impurities on superconducting surfaces, we present here a
comprehensive theoretical study of the interplay between Yu-Shiba-Rusinov bound
states and (multiple) Andreev reflections. Our theory is based on a combination
of an Anderson model with broken spin degeneracy and nonequilibrium Green's
function techniques that allows us to describe the electronic transport through
a magnetic impurity coupled to superconducting leads for arbitrary junction
transparency. Using this combination we are able to elucidate the different
tunneling processes that give a significant contribution to the subgap
transport. In particular, we predict the occurrence of a large variety of
Andreev reflections mediated by Yu-Shiba-Rusinov bound states that clearly
differ from the standard Andreev processes in non-magnetic systems. Moreover,
we provide concrete guidelines on how to experimentally identify the subgap
features originating from these tunneling events. Overall, our work provides
new insight into the role of the spin degree of freedom in Andreev transport
physics.Comment: 15 pages, 10 figure
Critical generalized inverse participation ratio distributions
The system size dependence of the fluctuations in generalized inverse
participation ratios (IPR's) at criticality is investigated
numerically. The variances of the IPR logarithms are found to be
scale-invariant at the macroscopic limit. The finite size corrections to the
variances decay algebraically with nontrivial exponents, which depend on the
Hamiltonian symmetry and the dimensionality. The large- dependence of the
asymptotic values of the variances behaves as according to theoretical
estimates. These results ensure the self-averaging of the corresponding
generalized dimensions.Comment: RevTex4, 5 pages, 4 .eps figures, to be published in Phys. Rev.
Extraordinary transverse magneto-optical Kerr effect in a superlens
It has been shown that a slab of a negative index material can behave as a
superlens enhancing the imaging resolution beyond the wavelength limit. We show
here that if such a slab possesses in addition some magneto-optical activity,
it could act as an ideal optical filter and exhibit an extraordinary transverse
magneto-optical Kerr effect. Moreover, we show that losses, which spoil the
imaging resolution of these lenses, are a necessary ingredient to observe this
effect.Comment: 5 pages, 6 figure
Vibrational Instabilities in Resonant Electron Transport through Single-Molecule Junctions
We analyze various limits of vibrationally coupled resonant electron
transport in single-molecule junctions. Based on a master equation approach, we
discuss analytic and numerical results for junctions under a high bias voltage
or weak electronic-vibrational coupling. It is shown that in these limits the
vibrational excitation of the molecular bridge increases indefinitely, i.e. the
junction exhibits a vibrational instability. Moreover, our analysis provides
analytic results for the vibrational distribution function and reveals that
these vibrational instabilities are related to electron-hole pair creation
processes.Comment: 19 pages, 3 figure
- …