We consider the question of existence of periodic solutions (called breather
solutions or discrete solitons) for the Discrete Nonlinear Schr\"odinger
Equation with saturable and power nonlinearity. Theoretical and numerical
results are proved concerning the existence and nonexistence of periodic
solutions by a variational approach and a fixed point argument. In the
variational approach we are restricted to DNLS lattices with Dirichlet boundary
conditions. It is proved that there exists parameters (frequency or
nonlinearity parameters) for which the corresponding minimizers satisfy
explicit upper and lower bounds on the power. The numerical studies performed
indicate that these bounds behave as thresholds for the existence of periodic
solutions. The fixed point method considers the case of infinite lattices.
Through this method, the existence of a threshold is proved in the case of
saturable nonlinearity and an explicit theoretical estimate which is
independent on the dimension is given. The numerical studies, testing the
efficiency of the bounds derived by both methods, demonstrate that these
thresholds are quite sharp estimates of a threshold value on the power needed
for the the existence of a breather solution. This it justified by the
consideration of limiting cases with respect to the size of the nonlinearity
parameters and nonlinearity exponents.Comment: 26 pages, 10 figure