38 research outputs found

    Relative paleointensity (RPI) in the latest Pleistocene (10–45 ka) and implications for deglacial atmospheric radiocarbon

    Get PDF
    We report magnetic properties and relative paleointensity (RPI) proxies from a suite of 10 conventional piston cores and Kasten cores from the SW Iberian Margin collected during cruise JC089 of the RSS James Cook in August 2013. Mean sedimentation rates are in the 10-20 cm/kyr range. Age models were acquired by correlation of Ca/Ti and Zr/Sr XRF core-scanning data to L* reflectance from the Cariaco Basin that is, in turn, tied to the Greenland ice-core chronology. The natural remanent magnetization (NRM) is represented by a single magnetization component carried by a low-coercivity mineral (magnetite), although reflectance and bulk magnetic properties indicate the presence of a high-coercivity (hematitic) magnetic phase, possibly from eolian dust. The presence of fine-grained hematite means that the sediments are not ideal for RPI studies, however the detrital hematite does not appear to contribute to the NRM or anhysteretic remanent magnetization (ARM). In order to test the usefulness of the RPI data, we construct a stack of 12 RPI records from the SW Iberian Margin for the 0-45 ka interval and compare it with a stack of 12 globally distributed marine and lake records, chosen on the basis of mean sedimentation rates (>15 cm/kyr) and superior age models. The two stacks are similar, but different from published RPI stacks, particularly for the 10-30 ka interval, and imply a virtual axial dipole moment (VADM) high at ~15-18 ka followed by a drop in field strength from ~15 to 13 ka. A revised VADM estimate calculated from Greenland 10Be ice-core flux using a contemporary age model is remarkably consistent with the new overall RPI stack, based on Iberian Margin and global RPI records. The elevated atmospheric 14C levels of the last ice age cannot, however, be fully explained by this RPI stack although relative changes such as the long-term drop in atmospheric 14C from 30 to 15 ka are reproduced, supporting the hypothesis of a combined influence of production rate and ocean ventilation on 14C during the last ice age

    A 1.5-million-year record of orbital and millennial climate variability in the North Atlantic

    Get PDF
    Climate during the last glacial period was marked by abrupt instability on millennial timescales that included large swings of temperature in and around Greenland (Daansgard-Oeschger events) and smaller, more gradual changes in Antarctica (AIM events). Less is known about the existence and nature of similar variability during older glacial periods, especially during the early Pleistocene when glacial cycles were dominantly occurring at 41 kyr intervals compared to the much longer and deeper glaciations of the more recent period. Here, we report a continuous millennially resolved record of stable isotopes of planktic and benthic foraminifera at IODP Site U1385 (the "Shackleton Site") from the southwestern Iberian margin for the last 1.5 million years, which includes the Middle Pleistocene Transition (MPT). Our results demonstrate that millennial climate variability (MCV) was a persistent feature of glacial climate, both before and after the MPT. Prior to 1.2 Ma in the early Pleistocene, the amplitude of MCV was modulated by the 41 kyr obliquity cycle and increased when axial tilt dropped below 23.5° and benthic δ18O exceeded ∼3.8 ‰ (corrected to Uvigerina), indicating a threshold response to orbital forcing. Afterwards, MCV became focused mainly on the transitions into and out of glacial states (i.e. inceptions and terminations) and during times of intermediate ice volume. After 1.2 Ma, obliquity continued to play a role in modulating the amplitude of MCV, especially during times of glacial inceptions, which are always associated with declining obliquity. A non-linear role for obliquity is also indicated by the appearance of multiples (82, 123 kyr) and combination tones (28 kyr) of the 41 kyr cycle. Near the end of the MPT (∼0.65 Ma), obliquity modulation of MCV amplitude wanes as quasi-periodic 100 kyr and precession power increase, coinciding with the growth of oversized ice sheets on North America and the appearance of Heinrich layers in North Atlantic sediments. Whereas the planktic δ18O of Site U1385 shows a strong resemblance to Greenland temperature and atmospheric methane (i.e. Northern Hemisphere climate), millennial changes in benthic δ18O closely follow the temperature history of Antarctica for the past 800 kyr. The phasing of millennial planktic and benthic δ18O variation is similar to that observed for MIS 3 throughout much of the record, which has been suggested to mimic the signature of the bipolar seesaw - i.e. an interhemispheric asymmetry between the timing of cooling in Antarctica and warming in Greenland. The Iberian margin isotopic record suggests that bipolar asymmetry was a robust feature of interhemispheric glacial climate variations for at least the past 1.5 Ma despite changing glacial boundary conditions. A strong correlation exists between millennial increases in planktic δ18O (cooling) and decreases in benthic δ13C, indicating that millennial variations in North Atlantic surface temperature are mirrored by changes in deep-water circulation and remineralization of carbon in the abyssal ocean. We find strong evidence that climate variability on millennial and orbital scales is coupled across different timescales and interacts in both directions, which may be important for linking internal climate dynamics and external astronomical forcing. Copyright

    Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial.

    Get PDF
    Considerable ambiguity remains over the extent and nature of millennial/centennial-scale climate instability during the Last Interglacial (LIG). Here we analyse marine and terrestrial proxies from a deep-sea sediment sequence on the Portuguese Margin and combine results with an intensively dated Italian speleothem record and climate-model experiments. The strongest expression of climate variability occurred during the transitions into and out of the LIG. Our records also document a series of multi-centennial intra-interglacial arid events in southern Europe, coherent with cold water-mass expansions in the North Atlantic. The spatial and temporal fingerprints of these changes indicate a reorganization of ocean surface circulation, consistent with low-intensity disruptions of the Atlantic meridional overturning circulation (AMOC). The amplitude of this LIG variability is greater than that observed in Holocene records. Episodic Greenland ice melt and runoff as a result of excess warmth may have contributed to AMOC weakening and increased climate instability throughout the LIG

    Genomic Characterization of the Taylorella Genus

    Get PDF
    The Taylorella genus comprises two species: Taylorella equigenitalis, which causes contagious equine metritis, and Taylorella asinigenitalis, a closely-related species mainly found in donkeys. We herein report on the first genome sequence of T. asinigenitalis, analyzing and comparing it with the recently-sequenced T. equigenitalis genome. The T. asinigenitalis genome contains a single circular chromosome of 1,638,559 bp with a 38.3% GC content and 1,534 coding sequences (CDS). While 212 CDSs were T. asinigenitalis-specific, 1,322 had orthologs in T. equigenitalis. Two hundred and thirty-four T. equigenitalis CDSs had no orthologs in T. asinigenitalis. Analysis of the basic nutrition metabolism of both Taylorella species showed that malate, glutamate and alpha-ketoglutarate may be their main carbon and energy sources. For both species, we identified four different secretion systems and several proteins potentially involved in binding and colonization of host cells, suggesting a strong potential for interaction with their host. T. equigenitalis seems better-equipped than T. asinigenitalis in terms of virulence since we identified numerous proteins potentially involved in pathogenicity, including hemagluttinin-related proteins, a type IV secretion system, TonB-dependent lactoferrin and transferrin receptors, and YadA and Hep_Hag domains containing proteins. This is the first molecular characterization of Taylorella genus members, and the first molecular identification of factors potentially involved in T. asinigenitalis and T. equigenitalis pathogenicity and host colonization. This study facilitates a genetic understanding of growth phenotypes, animal host preference and pathogenic capacity, paving the way for future functional investigations into this largely unknown genus

    Carbonate ions, orbits and Mg/Ca at ODP 1123

    No full text
    The accuracy of the magnesium/calcium palaeotemperature proxy has been questioned, in particular because the ratio of magnesium to calcium in foraminiferal tests could be affected by local or global changes in carbonate ion concentrations in deep water. A related question regarding the technique is its problematic phase relationship to orbital eccentricity: Mg/Ca records of intermediate and deep waters typically show a phase lead with respect to orbital eccentricity. This calls into question either the validity of the Mg/Ca palaeotemperature proxy, or the assumption that orbital eccentricity is pacing the 100 kyr climate oscillations, or both. This paper addresses these questions, and suggests that a phase lead of the type observed at ODP 1123 is unlikely to be generated by the operation of the carbonate ion effect, and might be attributable to heat storage in the oceans during low eccentricity episodes

    Carbonate ions, orbits and Mg/Ca at ODP 1123

    No full text
    The accuracy of the magnesium/calcium palaeotemperature proxy has been questioned, in particular because the ratio of magnesium to calcium in foraminiferal tests could be affected by local or global changes in carbonate ion concentrations in deep water. A related question regarding the technique is its problematic phase relationship to orbital eccentricity: Mg/Ca records of intermediate and deep waters typically show a phase lead with respect to orbital eccentricity. This calls into question either the validity of the Mg/Ca palaeotemperature proxy, or the assumption that orbital eccentricity is pacing the 100 kyr climate oscillations, or both. This paper addresses these questions, and suggests that a phase lead of the type observed at ODP 1123 is unlikely to be generated by the operation of the carbonate ion effect, and might be attributable to heat storage in the oceans during low eccentricity episodes

    Evaluation of evaporation climatology for the Congo Basin wet seasons in 11 global climate models

    No full text
    Across the Congo, there is a wide spread in rainfall in the two wet seasons in Coupled Model Intercomparison Project 5 global climate models (GCMs). As the Congo is believed to be a moisture recycling hot spot, the evaporation of excess water from the land surface in some models could be amplifying the model spread in rainfall. This study performs an exploratory process‐based evaluation of Congo Basin evaporation in 11 Coupled Model Intercomparison Project 5 GCMs that took part in the Atmospheric Model Intercomparison Project. Our aims are to improve scientific understanding about Congo evaporation, and to determine whether there are opportunities to improve how models produce Congo evaporation. Climatologically, we find that models with “realistic” rainfall simulate higher rainfall in November, the peak of the second wet season, than March, the peak of the first. However, models with “realistic” evaporation simulate lower evaporation in November than March, because these models suppress the transpiration component of the evaporation in November relative to March. In both wet seasons, subgrid rainfall schemes make these models simulate a credible ratio of transpiration to canopy evaporation, and cause them to generate evaporation in a more realistic manner. We therefore trust how these models produce evaporation in the wet seasons, and argue that lower transpiration is likely to explain why evaporation is lower in November than March in reality. We also suggest that using subgrid rainfall schemes in all GCMs could improve how models produce Congo evaporation during the wet seasons. This might reduce the model spread in Congo rainfall
    corecore