53 research outputs found
Foam, Foam-resin composite and method of making a foam-resin composite
This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F
High performance structural laminate composite material for use to 1000.degree. F. and above, apparatus for and method of manufacturing same, and articles made with same
A novel materials technology has been developed and demonstrated for providing a high modulus composite material for use to 1000.degree. F. and above. This material can be produced at 5-20% of the cost of refractory materials, and has higher structural properties. This technology successfully resolves the problem of thermal shock or ply lift, which limits traditional high temperature laminates (such as graphite/polyimide and graphite/phenolic) to temperatures of 550-650.degree. F. in thicker (0.25 and above) laminates. The technology disclosed herein is an enabling technology for the nose for the External Tank (ET) of the Space Shuttle, and has been shown to be capable of withstanding the severe environments encountered by the nose cone through wind tunnel testing, high temperature subcomponent testing, and full scale structural, dynamic, acoustic, and damage tolerance testing
'Education, education, education' : legal, moral and clinical
This article brings together Professor Donald Nicolson's intellectual interest in professional legal ethics and his long-standing involvement with law clinics both as an advisor at the University of Cape Town and Director of the University of Bristol Law Clinic and the University of Strathclyde Law Clinic. In this article he looks at how legal education may help start this process of character development, arguing that the best means is through student involvement in voluntary law clinics. And here he builds upon his recent article which argues for voluntary, community service oriented law clinics over those which emphasise the education of students
Adaptor protein-2 sigma subunit mutations causing familial hypocalciuric hypercalcaemia type 3 (FHH3) demonstrate genotype-phenotype correlations, codon bias and dominant-negative effects
The adaptor protein-2 sigma subunit (AP2σ2) is pivotal for clathrin-mediated endocytosis of plasma membrane constituents such as the calcium-sensing receptor (CaSR). Mutations of the AP2σ2 Arg15 residue result in familial hypocalciuric hypercalcaemia type 3 (FHH3), a disorder of extracellular calcium (Ca(2+) o) homeostasis. To elucidate the role of AP2σ2 in Ca(2+) o regulation, we investigated 65 FHH probands, without other FHH-associated mutations, for AP2σ2 mutations, characterized their functional consequences and investigated the genetic mechanisms leading to FHH3. AP2σ2 mutations were identified in 17 probands, comprising 5 Arg15Cys, 4 Arg15His and 8 Arg15Leu mutations. A genotype-phenotype correlation was observed with the Arg15Leu mutation leading to marked hypercalcaemia. FHH3 probands harboured additional phenotypes such as cognitive dysfunction. All three FHH3-causing AP2σ2 mutations impaired CaSR signal transduction in a dominant-negative manner. Mutational bias was observed at the AP2σ2 Arg15 residue as other predicted missense substitutions (Arg15Gly, Arg15Pro and Arg15Ser), which also caused CaSR loss-of-function, were not detected in FHH probands, and these mutations were found to reduce the numbers of CaSR-expressing cells. FHH3 probands had significantly greater serum calcium (sCa) and magnesium (sMg) concentrations with reduced urinary calcium to creatinine clearance ratios (CCCR) in comparison with FHH1 probands with CaSR mutations, and a calculated index of sCa × sMg/100 × CCCR, which was ≥ 5.0, had a diagnostic sensitivity and specificity of 83 and 86%, respectively, for FHH3. Thus, our studies demonstrate AP2σ2 mutations to result in a more severe FHH phenotype with genotype-phenotype correlations, and a dominant-negative mechanism of action with mutational bias at the Arg15 residue
Clinical development of new drug-radiotherapy combinations.
In countries with the best cancer outcomes, approximately 60% of patients receive radiotherapy as part of their treatment, which is one of the most cost-effective cancer treatments. Notably, around 40% of cancer cures include the use of radiotherapy, either as a single modality or combined with other treatments. Radiotherapy can provide enormous benefit to patients with cancer. In the past decade, significant technical advances, such as image-guided radiotherapy, intensity-modulated radiotherapy, stereotactic radiotherapy, and proton therapy enable higher doses of radiotherapy to be delivered to the tumour with significantly lower doses to normal surrounding tissues. However, apart from the combination of traditional cytotoxic chemotherapy with radiotherapy, little progress has been made in identifying and defining optimal targeted therapy and radiotherapy combinations to improve the efficacy of cancer treatment. The National Cancer Research Institute Clinical and Translational Radiotherapy Research Working Group (CTRad) formed a Joint Working Group with representatives from academia, industry, patient groups and regulatory bodies to address this lack of progress and to publish recommendations for future clinical research. Herein, we highlight the Working Group's consensus recommendations to increase the number of novel drugs being successfully registered in combination with radiotherapy to improve clinical outcomes for patients with cancer.National Institute for Health ResearchThis is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/nrclinonc.2016.7
Islet transplantation from a nationally funded UK centre reaches socially deprived groups and improves metabolic outcomes
Acknowledgements We thank the transplant nurses involved with the Scottish Islet Transplant Programme (T. McGilvray, J. Davidson, M. Phillips and C. Jansen) for help with participant assessment. We thank the Scottish National Blood Transfusion Services including the Histocompatibility and Immunogenetics Team for HLA typing and antibody screening, and the Tissue and Cells Team (A. Timpson, L. Fraser, L. Irvine and P. Henry) for islet isolation and product release testing. We acknowledge the Departments of Transplantation, Diabetes and Interventional Radiology at NHS Lothian for all aspects of patient care and the organ procurement programme. We thank J. Shaw and A. Brooks from the Department of Regenerative Medicine for Diabetes at the University of Newcastle for advice regarding CGMS. C-peptide assays were performed by the NIHR Cambridge Biomedical Research Centre, Core Biochemical Assay Laboratory. Funding: The Scottish Islet Transplant Programme is funded by the National Services Division. This research was funded by Diabetes UK (Biomedical and Psychosocial Outcomes of Islet Transplantation; Grant no. BDA 06/0003362), Diabetes Research and Wellness Foundation, Diabetes Foundation, Juvenile Diabetes Research Foundation and the Royal Infirmary Diabetes Treatment Trust Fund. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Peer reviewedPublisher PD
ReproPhylo:An environment for reproducible Phylogenomics
The reproducibility of experiments is key to the scientific process, and particularly necessary for accurate reporting of analyses in data-rich fields such as phylogenomics. We present ReproPhylo, a phylogenomic analysis environment developed to ensure experimental reproducibility, to facilitate the handling of large-scale data, and to assist methodological experimentation. Reproducibility, and instantaneous repeatability, is built in to the ReproPhylo system and does not require user intervention or configuration because it stores the experimental workflow as a single, serialized Python object containing explicit provenance and environment information. This 'single file' approach ensures the persistence of provenance across iterations of the analysis, with changes automatically managed by the version control program Git. This file, along with a Git repository, are the primary reproducibility outputs of the program. In addition, ReproPhylo produces an extensive human-readable report and generates a comprehensive experimental archive file, both of which are suitable for submission with publications. The system facilitates thorough experimental exploration of both parameters and data. ReproPhylo is a platform independent CC0 Python module and is easily installed as a Docker image or a WinPython self-sufficient package, with a Jupyter Notebook GUI, or as a slimmer version in a Galaxy distribution
Environmental, biological and anthropogenic effects on grizzly bear body size : temporal and spatial considerations
Background: Individual body growth is controlled in large part by the spatial and temporal heterogeneity of, and competition for, resources. Grizzly bears (Ursus arctos L.) are an excellent species for studying the effects of resource heterogeneity and maternal effects (i.e. silver spoon) on life history traits such as body size because their habitats are highly variable in space and time. Here, we evaluated influences on body size of grizzly bears in Alberta, Canada by testing six factors that accounted for spatial and temporal heterogeneity in environments during maternal, natal and 'capture' (recent) environments. After accounting for intrinsic biological factors (age, sex), we examined how body size, measured in mass, length and body condition, was influenced by: (a) population density; (b) regional habitat productivity; (c) inter-annual variability in productivity (including silver spoon effects); (d) local habitat quality; (e) human footprint (disturbances); and (f) landscape change. Results: We found sex and age explained the most variance in body mass, condition and length (R-2 from 0.48-0.64). Inter-annual variability in climate the year before and of birth (silver spoon effects) had detectable effects on the three-body size metrics (R-2 from 0.04-0.07); both maternal (year before birth) and natal (year of birth) effects of precipitation and temperature were related with body size. Local heterogeneity in habitat quality also explained variance in body mass and condition (R-2 from 0.01-0.08), while annual rate of landscape change explained additional variance in body length (R-2 of 0.03). Human footprint and population density had no observed effect on body size. Conclusions: These results illustrated that body size patterns of grizzly bears, while largely affected by basic biological characteristics (age and sex), were also influenced by regional environmental gradients the year before, and of, the individual's birth thus illustrating silver spoon effects. The magnitude of the silver spoon effects was on par with the influence of contemporary regional habitat productivity, which showed that both temporal and spatial influences explain in part body size patterns in grizzly bears. Because smaller bears were found in colder and less-productive environments, we hypothesize that warming global temperatures may positively affect body mass of interior bears
Environmental, biological and anthropogenic effects on grizzly bear body size : temporal and spatial considerations
Background: Individual body growth is controlled in large part by the spatial and temporal heterogeneity of, and competition for, resources. Grizzly bears (Ursus arctos L.) are an excellent species for studying the effects of resource heterogeneity and maternal effects (i.e. silver spoon) on life history traits such as body size because their habitats are highly variable in space and time. Here, we evaluated influences on body size of grizzly bears in Alberta, Canada by testing six factors that accounted for spatial and temporal heterogeneity in environments during maternal, natal and 'capture' (recent) environments. After accounting for intrinsic biological factors (age, sex), we examined how body size, measured in mass, length and body condition, was influenced by: (a) population density; (b) regional habitat productivity; (c) inter-annual variability in productivity (including silver spoon effects); (d) local habitat quality; (e) human footprint (disturbances); and (f) landscape change. Results: We found sex and age explained the most variance in body mass, condition and length (R-2 from 0.48-0.64). Inter-annual variability in climate the year before and of birth (silver spoon effects) had detectable effects on the three-body size metrics (R-2 from 0.04-0.07); both maternal (year before birth) and natal (year of birth) effects of precipitation and temperature were related with body size. Local heterogeneity in habitat quality also explained variance in body mass and condition (R-2 from 0.01-0.08), while annual rate of landscape change explained additional variance in body length (R-2 of 0.03). Human footprint and population density had no observed effect on body size. Conclusions: These results illustrated that body size patterns of grizzly bears, while largely affected by basic biological characteristics (age and sex), were also influenced by regional environmental gradients the year before, and of, the individual's birth thus illustrating silver spoon effects. The magnitude of the silver spoon effects was on par with the influence of contemporary regional habitat productivity, which showed that both temporal and spatial influences explain in part body size patterns in grizzly bears. Because smaller bears were found in colder and less-productive environments, we hypothesize that warming global temperatures may positively affect body mass of interior bears
- …