2,896 research outputs found
Development of a low-maintenance measurement approach to continuously estimate methane emissions: a case study
The chemical breakdown of organic matter in landfills represents a significant source of methane gas (CH4). Current estimates suggest that landfills are responsible for between 3% and 19% of global anthropogenic emissions. The net CH4 emissions resulting from biogeochemical processes and their modulation by microbes in landfills are poorly constrained by imprecise knowledge of environmental constraints. The uncertainty in absolute CH4 emissions from landfills is therefore considerable. This study investigates a new method to estimate the temporal variability of CH4 emissions using meteorological and CH4 concentration measurements downwind of a landfill site in Suffolk, UK from July to September 2014, taking advantage of the statistics that such a measurement approach offers versus shorter-term, but more complex and instantaneously accurate, flux snapshots. Methane emissions were calculated from CH4 concentrations measured 700 m from the perimeter of the landfill with observed concentrations ranging from background to 46.4 ppm. Using an atmospheric dispersion model, we estimate a mean emission flux of 709 ÎŒg mâ2 sâ1 over this period, with a maximum value of 6.21 mg mâ2 sâ1, reflecting the wide natural variability in biogeochemical and other environmental controls on net site emission. The emissions calculated suggest that meteorological conditions have an influence on the magnitude of CH4 emissions. We also investigate the factors responsible for the large variability observed in the estimated CH4 emissions, and suggest that the largest component arises from uncertainty in the spatial distribution of CH4 emissions within the landfill area. The results determined using the low-maintenance approach discussed in this paper suggest that a network of cheaper, less precise CH4 sensors could be used to measure a continuous CH4 emission time series from a landfill site, something that is not practical using far-field approaches such as tracer release methods. Even though there are limitations to the approach described here, this easy, low-maintenance, low-cost method could be used by landfill operators to estimate time-averaged CH4 emissions and their impact downwind by simultaneously monitoring plume advection and CH4 concentrations
COMPTEL gamma-ray observations of the C4 solar flare on 20 January 2000
The âPre-SMMâ (Vestrand and Miller 1998) picture of gamma-ray line (GRL) flares was that they are relatively rare events. This picture was quickly put in question with the launch of the Solar Maximum Mission (SMM). Over 100 GRL flares were seen with sizes ranging from very large GOES class events (X12) down to moderately small events (M2). It was argued by some (Bai 1986) that this was still consistent with the idea that GRL events are rare. Others, however, argued the opposite (Vestrand 1988; Cliver, Crosby and Dennis 1994), stating that the lower end of this distribution was just a function of SMMâs sensitivity. They stated that the launch of the Compton Gamma-ray Observatory (CGRO) would in fact continue this distribution to show even smaller GRL flares. In response to a BACODINE cosmic gamma-ray burst alert, COMPtonTELescope on the CGRO recorded gamma rays above 1 MeV from the C4 flare at 0221 UT 20 January 2000. This event, though at the limits of COMPTELâs sensitivity, clearly shows a nuclear line excess above the continuum. Using new spectroscopy techniques we were able to resolve individual lines. This has allowed us to make a basic comparison of this event with the GRL flare distribution from SMM and also compare this flare with a well-observed large GRL flare seen by OSSE
The Locations of Gamma-Ray Bursts Measured by COMPTEL
The COMPTEL instrument on the Compton Gamma Ray Observatory is used to
measure the locations of gamma-ray bursts through direct imaging of MeV
photons. In a comprehensive search, we have detected and localized 29 bursts
observed between 1991 April 19 and 1995 May 31. The average location accuracy
of these events is 1.25\arcdeg (1), including a systematic error of
\sim0.5\arcdeg, which is verified through comparison with Interplanetary
Network (IPN) timing annuli. The combination of COMPTEL and IPN measurements
results in locations for 26 of the bursts with an average ``error box'' area of
only 0.3 deg (1). We find that the angular distribution of
COMPTEL burst locations is consistent with large-scale isotropy and that there
is no statistically significant evidence of small-angle auto-correlations. We
conclude that there is no compelling evidence for burst repetition since no
more than two of the events (or 7% of the 29 bursts) could possibly have
come from the same source. We also find that there is no significant
correlation between the burst locations and either Abell clusters of galaxies
or radio-quiet quasars. Agreement between individual COMPTEL locations and IPN
annuli places a lower limit of 100~AU (95% confidence) on the distance to
the stronger bursts.Comment: Accepted for publication in the Astrophysical Journal, 1998 Jan. 1,
Vol. 492. 33 pages, 9 figures, 5 table
Level spacing statistics of classically integrable systems -Investigation along the line of the Berry-Robnik approach-
By extending the approach of Berry and Robnik, the limiting level spacing
distribution of a system consisting of infinitely many independent components
is investigated. The limiting level spacing distribution is characterized by a
single monotonically increasing function of the level spacing
. Three cases are distinguished: (i) Poissonian if ,
(ii) Poissonian for large , but possibly not for small if
, and (iii) sub-Poissonian if .
This implies that, even when energy-level distributions of individual
components are statistically independent, non-Poissonian level spacing
distributions are possible.Comment: 19 pages, 4 figures. Accepted for publication in Phys. Rev.
Gravitomagnetic Effects in the Propagation of Electromagnetic Waves in Variable Gravitational Fields of Arbitrary-Moving and Spinning Bodies
Propagation of light in the gravitational field of self-gravitating spinning
bodies moving with arbitrary velocities is discussed. The gravitational field
is assumed to be "weak" everywhere. Equations of motion of a light ray are
solved in the first post-Minkowskian approximation that is linear with respect
to the universal gravitational constant . We do not restrict ourselves with
the approximation of gravitational lens so that the solution of light geodesics
is applicable for arbitrary locations of source of light and observer. This
formalism is applied for studying corrections to the Shapiro time delay in
binary pulsars caused by the rotation of pulsar and its companion. We also
derive the correction to the light deflection angle caused by rotation of
gravitating bodies in the solar system (Sun, planets) or a gravitational lens.
The gravitational shift of frequency due to the combined translational and
rotational motions of light-ray-deflecting bodies is analyzed as well. We give
a general derivation of the formula describing the relativistic rotation of the
plane of polarization of electromagnetic waves (Skrotskii effect). This formula
is valid for arbitrary translational and rotational motion of gravitating
bodies and greatly extends the results of previous researchers. Finally, we
discuss the Skrotskii effect for gravitational waves emitted by localized
sources such as a binary system. The theoretical results of this paper can be
applied for studying various relativistic effects in microarcsecond space
astrometry and developing corresponding algorithms for data processing in space
astrometric missions such as FAME, SIM, and GAIA.Comment: 36 pages, 1 figure, submitted to Phys. Rev.
The geometry of spontaneous spiking in neuronal networks
The mathematical theory of pattern formation in electrically coupled networks
of excitable neurons forced by small noise is presented in this work. Using the
Freidlin-Wentzell large deviation theory for randomly perturbed dynamical
systems and the elements of the algebraic graph theory, we identify and analyze
the main regimes in the network dynamics in terms of the key control
parameters: excitability, coupling strength, and network topology. The analysis
reveals the geometry of spontaneous dynamics in electrically coupled network.
Specifically, we show that the location of the minima of a certain continuous
function on the surface of the unit n-cube encodes the most likely activity
patterns generated by the network. By studying how the minima of this function
evolve under the variation of the coupling strength, we describe the principal
transformations in the network dynamics. The minimization problem is also used
for the quantitative description of the main dynamical regimes and transitions
between them. In particular, for the weak and strong coupling regimes, we
present asymptotic formulas for the network activity rate as a function of the
coupling strength and the degree of the network. The variational analysis is
complemented by the stability analysis of the synchronous state in the strong
coupling regime. The stability estimates reveal the contribution of the network
connectivity and the properties of the cycle subspace associated with the graph
of the network to its synchronization properties. This work is motivated by the
experimental and modeling studies of the ensemble of neurons in the Locus
Coeruleus, a nucleus in the brainstem involved in the regulation of cognitive
performance and behavior
Design, Construction, Operation and Performance of a Hadron Blind Detector for the PHENIX Experiment
A Hadron Blind Detector (HBD) has been developed, constructed and
successfully operated within the PHENIX detector at RHIC. The HBD is a
Cherenkov detector operated with pure CF4. It has a 50 cm long radiator
directly coupled in a window- less configuration to a readout element
consisting of a triple GEM stack, with a CsI photocathode evaporated on the top
surface of the top GEM and pad readout at the bottom of the stack. This paper
gives a comprehensive account of the construction, operation and in-beam
performance of the detector.Comment: 51 pages, 39 Figures, submitted to Nuclear Instruments and Method
Composition of the L5 Mars Trojans: Neighbors, not Siblings
Mars is the only terrestrial planet known to have Tro jan (co-orbiting)
asteroids, with a confirmed population of at least 4 objects. The origin of
these objects is not known; while several have orbits that are stable on
solar-system timescales, work by Rivkin et al. (2003) showed they have
compositions that suggest separate origins from one another. We have obtained
infrared (0.8-2.5 micron) spectroscopy of the two largest L5 Mars Tro jans, and
confirm and extend the results of Rivkin et al. (2003). We suggest that the
differentiated angrite meteorites are good spectral analogs for 5261 Eureka,
the largest Mars Trojan. Meteorite analogs for 101429 1998 VF31 are more varied
and include primitive achondrites and mesosiderites.Comment: 14 manuscript pages, 1 table, 6 figures. To be published in Icarus.
See companion paper 0709.1921 by Trilling et a
Observations of GRB 990123 by the Compton Gamma-Ray Observatory
GRB 990123 was the first burst from which simultaneous optical, X-ray and
gamma-ray emission was detected; its afterglow has been followed by an
extensive set of radio, optical and X-ray observations. We have studied the
gamma-ray burst itself as observed by the CGRO detectors. We find that
gamma-ray fluxes are not correlated with the simultaneous optical observations,
and the gamma-ray spectra cannot be extrapolated simply to the optical fluxes.
The burst is well fit by the standard four-parameter GRB function, with the
exception that excess emission compared to this function is observed below ~15
keV during some time intervals. The burst is characterized by the typical
hard-to-soft and hardness-intensity correlation spectral evolution patterns.
The energy of the peak of the nu f_nu spectrum, E_p, reaches an unusually high
value during the first intensity spike, 1470 +/- 110 keV, and then falls to
\~300 keV during the tail of the burst. The high-energy spectrum above ~MeV is
consistent with a power law with a photon index of about -3. By fluence, GRB
990123 is brighter than all but 0.4% of the GRBs observed with BATSE, clearly
placing it on the -3/2 power-law portion of the intensity distribution.
However, the redshift measured for the afterglow is inconsistent with the
Euclidean interpretation of the -3/2 power-law. Using the redshift value of >=
1.61 and assuming isotropic emission, the gamma-ray fluence exceeds 10E54 ergs.Comment: Submitted to The Astrophysical Journal. 16 pages including 4 figure
- âŠ