1,516 research outputs found

    “This Erstwhile Unreadable Text”: Deep Time, Multidisciplinarity and First-Year Writing Faculty Mentoring and Support

    Get PDF
    Despite the otherwise rich multidisciplinary terrain of writing studies, the strategies most often used with first-year writing teacher teaching mentoring and support tend to remain discordantly anchored to a comparatively narrow version of writing pedagogy. I argue in this article that the geologic concept of deep time offers a way of infusing a multidisciplinary dimension into first-year writing faculty teaching mentoring and support that will enrich the ways faculty and students think, write, and talk about first-year writing. This article discusses deep-time pedagogy, providing specific strategies for infusing multidisciplinary dimensions into first-year writing faculty teaching mentoring and support. Such a move is vital across nearly all contexts of first-year writing, not only where first-year writing has overtly multidisciplinary features (as in my program), but also where first-year writing programs are housed in English departments

    Performance comparison of point and spatial access methods

    Get PDF
    In the past few years a large number of multidimensional point access methods, also called multiattribute index structures, has been suggested, all of them claiming good performance. Since no performance comparison of these structures under arbitrary (strongly correlated nonuniform, short "ugly") data distributions and under various types of queries has been performed, database researchers and designers were hesitant to use any of these new point access methods. As shown in a recent paper, such point access methods are not only important in traditional database applications. In new applications such as CAD/CIM and geographic or environmental information systems, access methods for spatial objects are needed. As recently shown such access methods are based on point access methods in terms of functionality and performance. Our performance comparison naturally consists of two parts. In part I we w i l l compare multidimensional point access methods, whereas in part I I spatial access methods for rectangles will be compared. In part I we present a survey and classification of existing point access methods. Then we carefully select the following four methods for implementation and performance comparison under seven different data files (distributions) and various types of queries: the 2-level grid file, the BANG file, the hB-tree and a new scheme, called the BUDDY hash tree. We were surprised to see one method to be the clear winner which was the BUDDY hash tree. It exhibits an at least 20 % better average performance than its competitors and is robust under ugly data and queries. In part I I we compare spatial access methods for rectangles. After presenting a survey and classification of existing spatial access methods we carefully selected the following four methods for implementation and performance comparison under six different data files (distributions) and various types of queries: the R-tree, the BANG file, PLOP hashing and the BUDDY hash tree. The result presented two winners: the BANG file and the BUDDY hash tree. This comparison is a first step towards a standardized testbed or benchmark. We offer our data and query files to each designer of a new point or spatial access method such that he can run his implementation in our testbed

    3+1 Approach to the Long Wavelength Iteration Scheme

    Full text link
    Large-scale inhomogeneities and anisotropies are modeled using the Long Wavelength Iteration Scheme. In this scheme solutions are obtained as expansions in spatial gradients, which are taken to be small. It is shown that the choice of foliation for spacetime can make the iteration scheme more effective in two respects: (i) the shift vector can be chosen so as to dilute the effect of anisotropy on the late-time value of the extrinsic curvature of the spacelike hypersurfaces of the foliation; and (ii) pure gauge solutions present in a similar calculation using the synchronous gauge vanish when the spacelike hypersurfaces have extrinsic curvature with constant trace. We furthermore verify the main conclusion of the synchronous gauge calculation which is large-scale inhomogeneity decays if the matter--considered to be that of a perfect-fluid with a barotropic equation of state--violates the strong-energy condition. Finally, we obtain the solution for the lapse function and discuss its late-time behaviour. It is found that the lapse function is well-behaved when the matter violates the strong energy condition.Comment: 21 pages, TeX file, already publishe

    A Survey of Selected Attendance Problems in the Toppenish Junior High School

    Get PDF
    The field of attendance is very broad in scope. This is not a study of a single problem. The main part of the research deals with the relationship between absences and grades, and the question frequently comes up, “Are absences the cause of poor grades, or are poor grades the cause of absences?

    An investigation into sonography student experiences of simulation teaching and learning in the acquisition of clinical skills

    Get PDF
    ©, 2014, SAGE Publications Ltd. All rights reserved. Technological developments are impacting on many aspects of life, including education. One particular area of technology where there is growing interest within higher education institutions (HEIs) offering healthcare training is the use of simulators. The literature shows diverging views on the role of simulated learning in healthcare and further evaluation is needed to explore the quality of learning opportunities that are offered, and their effectiveness in the preparation of students for clinical practice. A qualitative study was undertaken, using interviews to explore the experiences of a group of sonography students after interacting with an ultrasound simulator. Simulation was positively evaluated by students inthis study. The findings confirm that simulated learning enables students to be interactive learners rather than beingpassive recipients of knowledge. Simulated learning provides learning opportunities in a risk free environment, which reduces stress for the student and potential harm to patients. Confidence levels were increased, thereby improving futureclinical scanning experiences for both the student and their patients. Suggestions were made for the more effectiveintegration of simulated learning into the curriculum. Continued research into simulation, teaching and learning practices needs to occur if we are to ensure maximum advantage of the simulation experience

    The dynamics of dissipative multi-fluid neutron star cores

    Full text link
    We present a Newtonian multi-fluid formalism for superfluid neutron star cores, focussing on the additional dissipative terms that arise when one takes into account the individual dynamical degrees of freedom associated with the coupled "fluids". The problem is of direct astrophysical interest as the nature of the dissipative terms can have significant impact on the damping of the various oscillation modes of the star and the associated gravitational-wave signatures. A particularly interesting application concerns the gravitational-wave driven instability of f- and r-modes. We apply the developed formalism to two specific three-fluid systems: (i) a hyperon core in which both Lambda and Sigma^- hyperons are present, and (ii) a core of deconfined quarks in the colour-flavour-locked phase in which a population of neutral K^0 kaons is present. The formalism is, however, general and can be applied to other problems in neutron-star dynamics (such as the effect of thermal excitations close to the superfluid transition temperature) as well as laboratory multi-fluid systems.Comment: RevTex, no figure

    Long-wavelength iteration scheme and scalar-tensor gravity

    Get PDF
    Inhomogeneous and anisotropic cosmologies are modeled withing the framework of scalar-tensor gravity theories. The inhomogeneities are calculated to third-order in the so-called long-wavelength iteration scheme. We write the solutions for general scalar coupling and discuss what happens to the third-order terms when the scalar-tensor solution approaches at first-order the general relativistic one. We work out in some detail the case of Brans-Dicke coupling and determine the conditions for which the anisotropy and inhomogeneity decay as time increases. The matter is taken to be that of perfect fluid with a barotropic equation of state.Comment: 13 pages, requires REVTeX, submitted to Phys. Rev.
    • …
    corecore