In the past few years a large number of multidimensional point access methods, also called
multiattribute index structures, has been suggested, all of them claiming good performance. Since no
performance comparison of these structures under arbitrary (strongly correlated nonuniform, short
"ugly") data distributions and under various types of queries has been performed, database
researchers and designers were hesitant to use any of these new point access methods. As shown in
a recent paper, such point access methods are not only important in traditional database applications.
In new applications such as CAD/CIM and geographic or environmental information systems, access
methods for spatial objects are needed. As recently shown such access methods are based on point
access methods in terms of functionality and performance. Our performance comparison naturally
consists of two parts. In part I we w i l l compare multidimensional point access methods, whereas in
part I I spatial access methods for rectangles will be compared. In part I we present a survey and
classification of existing point access methods. Then we carefully select the following four methods
for implementation and performance comparison under seven different data files (distributions) and
various types of queries: the 2-level grid file, the BANG file, the hB-tree and a new scheme, called
the BUDDY hash tree. We were surprised to see one method to be the clear winner which was the
BUDDY hash tree. It exhibits an at least 20 % better average performance than its competitors and is
robust under ugly data and queries. In part I I we compare spatial access methods for rectangles.
After presenting a survey and classification of existing spatial access methods we carefully selected
the following four methods for implementation and performance comparison under six different data
files (distributions) and various types of queries: the R-tree, the BANG file, PLOP hashing and the
BUDDY hash tree. The result presented two winners: the BANG file and the BUDDY hash tree.
This comparison is a first step towards a standardized testbed or benchmark. We offer our data and
query files to each designer of a new point or spatial access method such that he can run his
implementation in our testbed