912 research outputs found

    Controls on andesitic glaciovolcanism at ice-capped volcanoes from field and experimental studies

    Get PDF
    Glaciovolcanic deposits at Tongariro and Ruapehu volcanoes, New Zealand, represent diverse styles of interaction between wet-based glaciers and andesitic lava. There are ice-confined lavas, and also hydroclastic breccia and subaqueous pyroclastic deposits that formed during effusive and explosive eruptions into meltwater beneath the glacier; they are rare among globally reported products of andesitic glaciovolcanism. The apparent lack of hydrovolcanically fragmented andesite at ice-capped volcanoes has been attributed to a lack of meltwater at the interaction sites because either the thermal characteristics of andesite limit meltwater production or meltwater drains out through leaky glaciers and down steep volcano slopes. We used published field evidence and novel, dynamic andesite-ice experiments to show that, in some cases, meltwater accumulates under glaciers on andesitic volcanoes and that meltwater production rates increase as andesite pushes against an ice wall. We concur with models for eruptions beneath ice sheets showing that the glacial conditions and pre-eruption edifice morphology are more important controls on the style of glaciovolcanism and its products than magma composition and the thermal properties of magmas. Glaciovolcanic products can be useful proxies for paleoenvironment, and the range of andesitic products and the hydrological environments in which andesite erupts are greater than hitherto appreciated

    Systematic model behavior of adsorption on flat surfaces

    Full text link
    A low density film on a flat surface is described by an expansion involving the first four virial coefficients. The first coefficient (alone) yields the Henry's law regime, while the next three correct for the effects of interactions. The results permit exploration of the idea of universal adsorption behavior, which is compared with experimental data for a number of systems

    Effects of sea temperature and stratification changes on seabird breeding success

    Get PDF
    As apex predators in marine ecosystems, seabirds may primarily experience climate change impacts indirectly, via changes to their food webs. Observed seabird population declines have been linked to climate-driven oceanographic and food web changes. However, relationships have often been derived from relatively few colonies and consider only sea surface temperature (SST), so important drivers, and spatial variation in drivers, could remain undetected. Further, explicit climate change projections have rarely been made, so longer-term risks remain unclear. Here, we use tracking data to estimate foraging areas for eleven black-legged kittiwake (Rissa tridactyla) colonies in the UK and Ireland, thus reducing reliance on single colonies and allowing calculation of colony-specific oceanographic conditions. We use mixed models to consider how SST, the potential energy anomaly (indicating density stratification strength) and the timing of seasonal stratification influence kittiwake productivity. Across all colonies, higher breeding success was associated with weaker stratification before breeding and lower SSTs during the breeding season. Eight colonies with sufficient data were modelled individually: higher productivity was associated with later stratification at three colonies, weaker stratification at two, and lower SSTs at one, whilst two colonies showed no significant relationships. Hence, key drivers of productivity varied among colonies. Climate change projections, made using fitted models, indicated that breeding success could decline by 21 – 43% between 1961-90 and 2070-99. Climate change therefore poses a longer-term threat to kittiwakes, but as this will be mediated via availability of key prey species, other marine apex predators could also face similar threats

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Observation of exclusive DVCS in polarized electron beam asymmetry measurements

    Full text link
    We report the first results of the beam spin asymmetry measured in the reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry with a sin(phi) modulation is observed, as predicted for the interference term of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and leading-twist pQCD, the alpha is directly proportional to the imaginary part of the DVCS amplitude.Comment: 6 pages, 5 figure

    Precipitate Redistribution During Creep of Alloy 617

    Get PDF
    Nickel-based superalloys are being considered for applications within advanced nuclear power generation systems due to their high temperature strength and corrosion resistance. Alloy 617, a candidate for use in heat exchangers, derives its strength from both solid solution strengthening and the precipitation of carbide particles. However, during creep, carbides that are supposed to retard grain boundary motion are found to dissolve and re-precipitate on boundaries in tension. To quantify the redistribution, we have used electron backscatter diffraction and energy dispersive spectroscopy to analyze the microstructure of 617 after creep testing at 900 and 1000°C. The data were analyzed with respect to location of the carbides (e.g., intergranular vs. intragranular), grain boundary character, and precipitate type (i.e., Cr-rich or Mo-rich). We find that grain boundary character is the most important factor in carbide distribution; some evidence of preferential distribution to boundaries in tension is also observed at higher applied stresses. Finally, the results suggest that the observed redistribution is due to the migration of carbides to the boundaries and not the migration of boundaries to the precipitates

    PKC in platelet Ca²⁺ signalling

    Get PDF
    Rises in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) are central in platelet activation, yet many aspects of the underlying mechanisms are poorly understood. Most studies examine how experimental manipulations affect agonist-evoked rises in [Ca(2+)]cyt, but these only monitor the net effect of manipulations on the processes controlling [Ca(2+)]cyt (Ca(2+) buffering, sequestration, release, entry and removal), and cannot resolve the source of the Ca(2+) or the transporters or channels affected. To investigate the effects of protein kinase C (PKC) on platelet Ca(2+) signalling, we here monitor Ca(2+) flux around the platelet by measuring net Ca(2+) fluxes to or from the extracellular space and the intracellular Ca(2+) stores, which act as the major sources and sinks for Ca(2+) influx into and efflux from the cytosol, as well as monitoring the cytosolic Na(+) concentration ([Na(+)]cyt), which influences platelet Ca(2+) fluxes via Na(+)/Ca(2+) exchange. The intracellular store Ca(2+) concentration ([Ca(2+)]st) was monitored using Fluo-5N, the extracellular Ca(2+) concentration ([Ca(2+)]ext) was monitored using Fluo-4 whilst [Ca(2+)]cyt and [Na(+)]cyt were monitored using Fura-2 and SFBI, respectively. PKC inhibition using Ro-31-8220 or bisindolylmaleimide I potentiated ADP- and thrombin-evoked rises in [Ca(2+)]cyt in the absence of extracellular Ca(2+). PKC inhibition potentiated ADP-evoked but reduced thrombin-evoked intracellular Ca(2+) release and Ca(2+) removal into the extracellular medium. SERCA inhibition using thapsigargin and 2,5-di(tert-butyl) l,4-benzohydroquinone abolished the effect of PKC inhibitors on ADP-evoked changes in [Ca(2+)]cyt but only reduced the effect on thrombin-evoked responses. Thrombin evokes substantial rises in [Na(+)]cyt which would be expected to reduce Ca(2+) removal via the Na(+)/Ca(2+) exchanger (NCX). Thrombin-evoked rises in [Na(+)]cyt were potentiated by PKC inhibition, an effect which was not due to altered changes in non-selective cation permeability of the plasma membrane as assessed by Mn(2+) quench of Fura-2 fluorescence. PKC inhibition was without effect on thrombin-evoked rises in [Ca(2+)]cyt following SERCA inhibition and either removal of extracellular Na(+) or inhibition of Na(+)/K(+)-ATPase activity by removal of extracellular K(+) or treatment with digoxin. These data suggest that PKC limits ADP-evoked rises in [Ca(2+)]cyt by acceleration of SERCA activity, whilst rises in [Ca(2+)]cyt evoked by the stronger platelet activator thrombin are limited by PKC through acceleration of both SERCA and Na(+)/K(+)-ATPase activity, with the latter limiting the effect of thrombin on rises in [Na(+)]cyt and so forward mode NCX activity. The use of selective PKC inhibitors indicated that conventional and not novel PKC isoforms are responsible for the inhibition of agonist-evoked Ca(2+) signalling.This work was funded by the British Heart Foundation (PG/07/100/23759). AGSH was supported by a Research Fellowship from St Catharine’s College, University of Cambridge. RAL was supported by a Wellcome Trust Summer Studentship and BBS by a Browning Summer Bursary from Magdalene College, Cambridge.This is the author accepted manuscript. The final version is available from Cell Calcium via http://dx.doi.org/10.1016/j.ceca.2015.09.00

    A Bayesian analysis of pentaquark signals from CLAS data

    Get PDF
    We examine the results of two measurements by the CLAS collaboration, one of which claimed evidence for a Θ+\Theta^{+} pentaquark, whilst the other found no such evidence. The unique feature of these two experiments was that they were performed with the same experimental setup. Using a Bayesian analysis we find that the results of the two experiments are in fact compatible with each other, but that the first measurement did not contain sufficient information to determine unambiguously the existence of a Θ+\Theta^{+}. Further, we suggest a means by which the existence of a new candidate particle can be tested in a rigorous manner.Comment: 5 pages, 3 figure

    Electron Scattering From High-Momentum Neutrons in Deuterium

    Full text link
    We report results from an experiment measuring the semi-inclusive reaction d(e,eps)d(e,e'p_s) where the proton psp_s is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass WW^{*}, backward proton momentum ps\vec{p}_{s} and momentum transfer Q2Q^{2}. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ``bound neutron structure function'' F2neffF_{2n}^{eff} was extracted as a function of WW^{*} and the scaling variable xx^{*} at extreme backward kinematics, where effects of FSI appear to be smaller. For ps>400p_{s}>400 MeV/c, where the neutron is far off-shell, the model overestimates the value of F2neffF_{2n}^{eff} in the region of xx^{*} between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.Comment: 33 pages RevTeX, 9 figures, to be submitted to Phys. Rev. C. Fixed 1 Referenc
    corecore