983 research outputs found
Spatially patterned gradients of synaptic connectivity are established early in the developing retina
Retinal neurons receive input from other cells via synapses and the position of these synapses on the neurons reflects the retinal regions from which information is received. A new study in Neural Development establishes that the spatial distribution of excitatory synaptic inputs emerges at the onset of synapse formation rather than as a result of changes during neuronal reorganisation
Crowdsourcing Global Wastewater Data
No time to waste: Crowdsourcing global wastewater treatment data
Worldwide, over 80 percent of wastewater is discharged into water bodies without undergoing treatment, severely impairing human well-being and ecosystem vitality along the way. National performance on wastewater treatment is difficult to quantify and is poorly understood due to a lack of common definitions, poor data collection standards, and limited historical data. To address this, the Yale Environmental Performance Index (EPI), a research group that produces a biennial ranking of country-level environmental performance, developed a first-of-its kind national wastewater treatment indicator.[1]
The indicator assesses wastewater treatment performance for 183 countries, but there are still data gaps and quality issues to address. The Yale EPI is looking to refine and improve its database through a first-of-its-kind innovative effort to crowdsource updates and feedback using an interactive map of wastewater treatment performance.[2] The crowdsourcing effort is targeted at water experts and decision-makers around the world and aims to: Validate existing data by working with local experts, Improve spatial and temporal data coverage Build a wider community of users around wastewater data.
Yale EPI’s wastewater treatment indicator can help improve understanding of the topic, and refine the signal sent to policymakers about proper management.
Keywords (wastewater, crowdsourcing, map, treatment, ecosystem, indicator, EPI, national, global, database)
[1] Malik, Omar A., et al. 2015. “A global indicator of wastewater treatment to inform the Sustainable Development Goals (SDGs).” Environmental Science & Policy 48: 172-185.
[2] Torres Quintanilla, Diego, Peter Hirsch, Samuel Cohen. Wastewater Treatment Map. Environmental Performance Index, Yale Center for Environmental Law & Policy, 6 July 2015. Web. 26 Aug. 2015.
Decoherence and Programmable Quantum Computation
An examination of the concept of using classical degrees of freedom to drive
the evolution of quantum computers is given. Specifically, when externally
generated, coherent states of the electromagnetic field are used to drive
transitions within the qubit system, a decoherence results due to the back
reaction from the qubits onto the quantum field. We derive an expression for
the decoherence rate for two cases, that of the single-qubit Walsh-Hadamard
transform, and for an implementation of the controlled-NOT gate. We examine the
impact of this decoherence mechanism on Grover's search algorithm, and on the
proposals for use of error-correcting codes in quantum computation.Comment: submitted to Phys. Rev. A 35 double-spaced pages, 2 figures, in LaTe
Overexpression of Mcl-1 exacerbates lymphocyte accumulation and autoimmune kidney disease in lpr mice
Cell death by apoptosis has a critical role during embryonic development and in maintaining tissue homeostasis. In mammals,
there are two converging apoptosis pathways: the ‘extrinsic’ pathway, which is triggered by engagement of cell surface ‘death
receptors’ such as Fas/APO-1; and the ‘intrinsic’ pathway, which is triggered by diverse cellular stresses, and is regulated by prosurvival
and pro-apoptotic members of the Bcl-2 family of proteins. Pro-survival Mcl-1, which can block activation of the proapoptotic
proteins, Bax and Bak, appears critical for the survival and maintenance of multiple haemopoietic cell types. To
investigate the impact on haemopoiesis of simultaneously inhibiting both apoptosis pathways, we introduced the vavP-Mcl-1
transgene, which causes overexpression of Mcl-1 protein in all haemopoietic lineages, into Faslpr/lpr mice, which lack functional
Fas and are prone to autoimmunity. The combined mutations had a modest impact on myelopoiesis, primarily an increase in the
macrophage/monocyte population in Mcl-1tg/lpr mice compared with lpr or Mcl-1tg mice. The impact on lymphopoiesis was
striking, with a marked elevation in all major lymphoid subsets, including the non-conventional double-negative (DN) T cells
(TCRβ+
CD4–
CD8–
B220+
) characteristic of Faslpr/lpr mice. Of note, the onset of autoimmunity was markedly accelerated in Mcl-1tg/lpr
mice compared with lpr mice, and this was preceded by an increase in immunoglobulin (Ig)-producing cells and circulating
autoantibodies. This degree of impact was surprising, given the relatively mild phenotype conferred by the vavP-Mcl-1 transgene
by itself: a two- to threefold elevation of peripheral B and T cells, no significant increase in the non-conventional DN T-cell
population and no autoimmune disease. Comparison of the phenotype with that of other susceptible mice suggests that the
development of autoimmune disease in Mcl-1tg/lpr mice may be influenced not only by Ig-producing cells but also other
haemopoietic cell types
Recommended from our members
Results of the Security in ActiveX Workshop, Pittsburgh, Pennsylvania USA, August 22-23, 2000
Cell-Autonomous Alterations in Dendritic Arbor Morphology and Connectivity Induced by Overexpression of MeCP2 in Xenopus Central Neurons In Vivo
Methyl CpG binding protein-2 (MeCP2) is an essential epigenetic regulator in human brain development. Mutations in the MeCP2 gene have been linked to Rett syndrome, a severe X-linked progressive neurodevelopmental disorder, and one of the most common causes of mental retardation in females. MeCP2 duplication and triplication have also been found to affect brain development, indicating that both loss of function and gain in MeCP2 dosage lead to similar neurological phenotypes. Here, we used the Xenopus laevis visual system as an in vivo model to examine the consequence of increased MeCP2 expression during the morphological maturation of individual central neurons in an otherwise intact brain. Single-cell overexpression of wild-type human MeCP2 was combined with time-lapse confocal microscopy imaging to study dynamic mechanisms by which MeCP2 influences tectal neuron dendritic arborization. Analysis of neurons co-expressing DsRed2 demonstrates that MeCP2 overexpression specifically interfered with dendritic elaboration, decreasing the rates of branch addition and elimination over a 48 hour observation period. Moreover, dynamic analysis of neurons co-expressing wt-hMeCP2 and PSD95-GFP revealed that even though neurons expressing wt-hMeCP2 possessed significantly fewer dendrites and simpler morphologies than control neurons at the same developmental stage, postsynaptic site density in wt-hMeCP2-expressing neurons was similar to controls and increased at a rate higher than controls. Together, our in vivo studies support an early, cell-autonomous role for MeCP2 during the morphological differentiation of neurons and indicate that perturbations in MeCP2 gene dosage result in deficits in dendritic arborization that can be compensated, at least in part, by synaptic connectivity changes
Transient ipsilateral retinal ganglion cell projections to the brain: Extent, targeting, and disappearance
Author ManuscriptDuring development of the mammalian eye, the first retinal ganglion cells (RGCs) that extend to the brain are located in the dorsocentral (DC) retina. These RGCs extend to either ipsilateral or contralateral targets, but the ipsilateral projections do not survive into postnatal periods. The function and means of disappearance of the transient ipsilateral projection are not known. We have followed the course of this transient early ipsilateral cohort of RGCs, paying attention to how far they extend, whether they enter targets and if so, which ones, and the time course of their disappearance. The DC ipsilateral RGC axons were traced using DiI labeling at E13.5 and E15.5 to compare the proportion of ipsi- versus contralateral projections during the first period of growth. In utero electroporation of E12.5 retina with GFP constructs was used to label axons that could be visualized at succeeding time points into postnatal ages. Our results show that the earliest ipsilateral axons grow along the cellular border of the brain, and are segregated from the laterally positioned contralateral axons from the same retinal origin. In agreement with previous reports, although many early RGCs extend ipsilaterally, after E16 their number rapidly declines. Nonetheless, some ipsilateral axons from the DC retina enter the superior colliculus and arborize minimally, but very few enter the dorsal lateral geniculate nucleus and those that do extend only short branches. While the mechanism of selective axonal disappearance remains elusive, these data give further insight into establishment of the visual pathways.Contract grant sponsor: NIH (C.A.M.); contract grant number: R01 EY012736 and P30 EY019007.Contract grant sponsors: Portuguese Foundation for Science and Technology fellowship SFRH/BD/74926/2010; Luso-American Development Foundation; MD-PhD Program, University of Minho (C.A.S.)
Recommended from our members
The 4D Camera: An 87 kHz Direct Electron Detector for Scanning/Transmission Electron Microscopy
We describe the development, operation, and application of the 4D Camera-a 576 by 576 pixel active pixel sensor for scanning/transmission electron microscopy which operates at 87,000 Hz. The detector generates data at ∼480 Gbit/s which is captured by dedicated receiver computers with a parallelized software infrastructure that has been implemented to process the resulting 10-700 Gigabyte-sized raw datasets. The back illuminated detector provides the ability to detect single electron events at accelerating voltages from 30 to 300 kV. Through electron counting, the resulting sparse data sets are reduced in size by 10--300× compared to the raw data, and open-source sparsity-based processing algorithms offer rapid data analysis. The high frame rate allows for large and complex scanning diffraction experiments to be accomplished with typical scanning transmission electron microscopy scanning parameters
Quantum entanglement and disentanglement of multi-atom systems
We present a review of recent research on quantum entanglement, with special
emphasis on entanglement between single atoms, processing of an encoded
entanglement and its temporary evolution. Analysis based on the density matrix
formalism are described. We give a simple description of the entangling
procedure and explore the role of the environment in creation of entanglement
and in disentanglement of atomic systems. A particular process we will focus on
is spontaneous emission, usually recognized as an irreversible loss of
information and entanglement encoded in the internal states of the system. We
illustrate some certain circumstances where this irreversible process can in
fact induce entanglement between separated systems. We also show how
spontaneous emission reveals a competition between the Bell states of a two
qubit system that leads to the recently discovered "sudden" features in the
temporal evolution of entanglement. An another problem illustrated in details
is a deterministic preparation of atoms and atomic ensembles in long-lived
stationary squeezed states and entangled cluster states. We then determine how
to trigger the evolution of the stable entanglement and also address the issue
of a steered evolution of entanglement between desired pairs of qubits that can
be achieved simply by varying the parameters of a given system.Comment: Review articl
Bad Can Act as a Key Regulator of T Cell Apoptosis and T Cell Development
Bad is a distant relative of Bcl-2 and acts to promote cell death. Here, we show that Bad expression levels are greatly increased in thymocytes during apoptosis. We generated bad transgenic mice to study the action of upregulated Bad expression on T cell apoptosis. The T cells from these mice are highly sensitive to apoptotic stimuli, including anti-CD95. The numbers of T cells are greatly depleted and the processes of T cell development and selection are perturbed. We show that the proapoptotic function of Bad in primary T cells is regulated by Akt kinase and that Bad overexpression enhances both cell cycle progression and interleukin 2 production after T cell activation. These data suggest that Bad can act as a key regulator of T cell apoptosis and that this is a consequence of its upregulation after exposure to death stimuli
- …