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Abstract

During development of the mammalian eye, the first retinal ganglion cells (RGCs) that extend to 

the brain are located in the dorsocentral retina. These RGCs extend to either ipsilateral or 

contralateral targets, but the ipsilateral projections do not survive into postnatal periods. The 

function and means of disappearance of the transient ipsilateral projection are not known. We have 

followed the course of this transient early ipsilateral cohort of RGCs, paying attention to how far 

they extend, whether they enter targets and if so, which ones, and the time course of their 

disappearance. The dorsocentral ipsilateral RGC axons were traced using DiI labeling at E13.5 

and 15.5 to compare the proportion of ipsi-versus contralateral projections during the first period 

of growth. In utero electroporation of E12.5 retina with GFP constructs was used to label axons 

that could be visualized at succeeding time points into postnatal ages. Our results show that the 

earliest ipsilateral axons grow along the cellular border of the brain, and are segregated from the 

laterally-postioned contralateral axons from the same retinal origin. In agreement with previous 

reports, although many early RGCs extend ipsilaterally, after E16 their number rapidly declines. 

Nonetheless, some ipsilateral axons from the dorsocentral retina enter the superior colliculus (SC) 

and arborize minimally, but very few enter the dorsal lateral geniculate nucleus (dLGN) and those 

that do extend only short branches. While the mechanism of selective axonal disappearance 

remains elusive, these data give further insight into establishment of the visual pathways.
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INTRODUCTION

The development of neuronal circuits is a dynamic process involving the formation of 

projections that do not persist in mature circuits (Luo and O’Leary, 2005). The elimination 
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of transient projections ranges from small-scale events such as local pruning of axonal 

branches and synaptic boutons, as in the vertebrate neuromuscular junction (Tapia et al., 

2012), to large-scale elimination of major axon projections or their collaterals (Stanfield and 

O’Leary, 1985; Luo and O’Leary, 2005) and wholesale elimination of neurons themselves, 

as in programmed cell death (Francisco-Morcillo et al., 2014).

An example of long axon elimination is the transient projection of retinal ganglion cells 

(RGCs) from the dorsocentral (DC) retina of rodents to the ipsilateral side of the brain 

(Cowan et al., 1984; Colello and Guillery, 1990; Petros et al., 2008). During the 

development of the mouse visual circuit, RGCs in the ventrotemporal (VT) crescent of the 

retina project to the ipsilateral side of the brain from embryonic (E) day E14.5 to E16.5, 

while RGCs outside this crescent project contralaterally (Petros et al., 2008). RGC axons 

diverge ipsi- or contralaterally at the ventral midline of the brain and form the optic chiasm 

(OC) (Petros et al., 2008). After E16.5, RGCs from the VT crescent also project 

contralaterally. This plan comprises the permanent binocular circuit. However, during the 

first phase of retinal development, from E10.5–13.5, the first-born RGCs clustered in the DC 

retina project either contra- or ipsilaterally (Drager, 1985; Colello and Guillery, 1990; 

Guillery et al., 1995). The ipsilateral DC RGCs cannot be retrogradely labeled postnatally 

and thus their projections and the cell bodies themselves have been thought to disappear 

(Colello and Guillery, 1990; Petros et al., 2008). In mice, as assessed by DiI labeling, the 

ipsilateral RGC axons from the DC retina decrease to a negligible level by E16.5 (Colello 

and Guillery, 1990; Chan et al., 1999). In the rat, this central retinal ipsilateral RGC 

population persists after birth, and the few axons that project to the brain decrease over time 

(Cowan et al., 1984). However, the details of the transient ipsilateral RGC projections such 

as how far they extend, whether they enter targets and their behavior within target regions, 

the time course of their disappearance, and their function are not well understood.

Anterograde labeling with DiI has been widely used to label axonal projections in fixed 

developing nervous tissue (Colello and Guillery, 1990; Marcus and Mason, 1995), and can 

be used to chart the time course of axonal projections. However, this approach provides 

snapshots of the status of developing cells and is not prospective, whereby cells could be 

labeled at early stages then the time course of projections followed. In order to chart the 

early DC ipsilateral RGC projection at later developmental stages, we used in utero 

electroporation of a GFP plasmid at E12.5. This strategy allows prospective analysis of the 

number, projection, and disappearance of this cohort of RGC axons.

In this study, we used both DiI labeling and GFP in utero electroporation to track the earliest 

ipsilateral fibers from retina to brain. We observed that while the DC ipsilateral RGC axons 

enter the optic tract first, they do not progress as far as the contralateral axons from E13.5 to 

E15.5. The number of ipsilateral RGC axons increases until E16.5 and sharply decreases 

thereafter, but a few remaining axons project to the SC. Moreover, while the a few early-

growing ipsilateral RGC axons enter the SC and elaborate arbors at postnatal ages, these 

RGC axons do not make substantial projections to the more proximal dorsal lateral 

geniculate nucleus (dLGN). In addition, at the time of the early ipsilateral RGC axon 

decrease, most have not yet reached their target, suggesting that their disappearance may not 

be related to target-derived factors (Luo and O’Leary, 2005).
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METHODS

Animals

C57BL/6J mice were kept in a timed pregnancy breeding colony at Columbia University. 

Procedures for the care and breeding of mice follow regulatory guidelines of the Columbia 

University Institutional Animal Care and Use Committee. Noon of the day on which a plug 

was found was considered E0.5.

Tissue fixation

Embryos were removed from mothers anesthetized with ketamine/xylazine (100 and 10 

mg/kg, respectively, in 0.9% saline), and before E16.5, fixed by immersion in 4% 

paraformaldehyde (PFA) in phosphate buffer (PB) (pH 7.4) overnight, or at E16 and 

thereafter, embryos were injected with additional anesthetic, and perfused intracardially with 

4% PFA/PB, and post-fixed overnight at 4°C.

DiI Labeling and Quantification

Anterograde labeling was performed on fixed tissue using 1,1′-dioctadecyl-3,3,3′3′-

tetramethylindocarbocyanine perchlorate (DiI) or 4-(4-(dihexadecylamino)styryl)-N-

methylpyridinium iodide (DiA) (Molecular Probes) as previously described (Plump et al., 

2002) (Pak et al., 2004). Briefly, the lens was removed from the eye of a fixed embryonic 

head and a small crystal of DiI or DiA was placed on the optic nerve, at E13.5 and E14.5 

when the first-born RGCs from the dorsocentral (DC) retina have extended their axons 

ipsilaterally (the transient population of ipsilateral RGCs) and contralaterally, or on the DC 

retina at E15.5 to label the same populations. The position of the DiI labeling at E15.5 was 

confirmed in whole mounts or frontal sections through the eye, and only the cases with DiI 

labeling in the DC retina were used for analyses. Heads were incubated in a solution of 1% 

PFA in phosphate buffer saline (PBS) for 4 days (E13.5 or younger embryos) or 7 days 

(E15.5 embryos) at room temperature. Whole heads were vibratome sectioned frontally at 

100μm. The samples with evidence of leakage of DiI into radial glia in the ventral 

diencephalon were discarded.

The extent of RGC axon projections from the ventral midline along the optic tract (OT) to 

the most dorsal RGC axon tip was measured with ImageJ software (version 1.48, NIH). To 

determine the proportion of ipsilateral fibers relative to the total number of labeled fibers, 

the full retina was labeled with DiI at E13.5 and E15.5, and the pixel intensity was 

quantified in the OT as in previous studies (Petros et al., 2009; Erskine et al., 2011; 

Escalante et al., 2013). At E13.5 the first section after the optic chiasm was selected, and at 

E15.5 the first and second section after the optic chiasm were analyzed. To measure the 

pixel intensity in the OT with ImageJ software, twelve micron square regions of interest 

(ROI) were defined at three points along the OT, 500, 750, and 1000 μm dorsal to the 

ventral midline. Pixel intensity was calculated in the contralateral (cROI) and ipsilateral 

(iROI) OT in each of the sections described above, and an additional ROI was selected 

outside the tissue area in order to calculate the background pixel intensity. The background 

pixel intensity value was subtracted from the individual pixel intensity values. The 

ipsilateral ratio was calculated as (iROI / (iROI + cROI)) × 100, as previously described 
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(Petros et al., 2009; Erskine et al., 2011; Escalante et al., 2013) and expressed as a 

percentage. The ipsilateral ratio was calculated at each distance at E13.5 and E15.5, and the 

values of the 3 segments averaged for each case.

In utero electroporation

In utero electroporation was performed as previously described (Garcia-Frigola et al., 2007; 

Matsuda and Cepko, 2007; Petros et al., 2009). Pregnant female mice carrying E12.5 

embryos were anesthetized with an intraperitoneal injection of ketamine-xylazine (100 and 

10 mg/kg, respectively, in 0.9% saline). A solution of 5μg/μL membrane-bound GFP 

plasmid (Addgene plasmid 14757) (Matsuda and Cepko, 2007) + 0.03% Fast Green dye in 

distilled water was loaded into a graduated glass micropipette and approximately 0.3 μl was 

injected into the sub-retinal space. Tweezer-type electrodes (CUY650-P7, Nepa Gene) were 

then placed around the embryo’s head, with the ‘+’ electrode on the side on which the retina 

is injected, and five 50 ms square current pulses were delivered (25V) at 950 ms intervals 

using an electroporator (CUY21EDIT Square Wave, Nepa Gene). After repeating this 

procedure for other embryos, the peritoneum was sutured and the skin was stapled closed. 

For pain management, the mother was injected with buprenorphine (0.1mg/kg, SC), 

immediately before surgery and every 8–12h, up to 72h after surgery. The embryos were 

allowed to develop normally for 2–12 days. Previous studies have shown that 

electroporation of GFP plasmids into the subretinal space at E13.5 labels retinal progenitors 

that become postmitotic two days later (Garcia-Frigola et al., 2007). Here we electroporated 

retinal progenitors at E12.5 and by the time GFP is expressed, differentiated RGCs extend 

axons that cross the chiasm midline, as viewed at E14.5. GFP-labeled cells were consistently 

seen in the central retina from which both transient ipsilateral RGCs and permanent 

contralateral RGCs arise.

Tissue processing of electroporated embryos and pups

Embryos and pups were sacrificed as described above. The left retina of each embryo or pup 

was dissected, immunostained for GFP (rabbit polyclonal anti-GFP, 1:1000, Invitrogen), 

flattened as a whole mount, and confirmed for successful electroporation. Retinal whole 

mounts were imaged and ImageJ was used to calculate the GFP+ retinal area and pixel 

intensity of GFP+ cells. Only the cases in which the GFP+ area comprised more than 5% of 

the total retinal area were used for further analysis. Whole heads or brains were vibratome 

sectioned frontally at 100μm and immunostained for GFP.

Immunohistochemistry

Electroporated retinas and brain sections were blocked in 10% donkey serum (DS) + 1% 

Triton20 in PBS and then incubated with rabbit GFP antibody (1:1000, Life Technologies) + 

1% DS + 1% Triton20 in PBS, overnight at 4°C. After 3 PBS washes for a total of 1 hour, 

tissue was incubated in Alexa488 anti-rabbit GFP antibody (1:500, Life Technologies) for 

3h at room temperature.
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Image processing and quantification

Whole mounts and sections of GFP electroporated and DiI labeled brains were imaged on a 

Zeiss AxioImager M2 microscope with an AxioCam MRm camera, and Neurolucida 

software (v 11.01, MicroBrightField Systems), using 5×, 10×, or 20× objectives. Images 

were analyzed with ImageJ software (version 1.48, NIH).

Quantification of electroporated RGC axons in the optic tract

Frontal sections containing RGC axons in the first 500 microns caudal to the optic chiasm 

(OC) were selected to quantify the number of ipsilateral axons. The number of ipsilateral 

RGC axons was quantified in multiple sections, but care was taken not to quantify axons 

twice. Since the GFP+ area varies through samples, the number of ipsilateral axons in the 

OT was normalized to the GFP+ area in the retina as previously (Petros et al., 2009) by 

calculating the number of ipsilateral GFP+ axons in the OT/ GFP+ area in the retina (mm2).

Axon reconstruction in the superior colliculus

All frontal sections containing the superior colliculus (SC) were selected for analysis. Using 

ImageJ software, a 100×100μm grid was aligned on these images with the midline 

considered sector 0. The area occupied by the contralateral axons or the coordinates of the 

ipsilateral axons was manually identified and recorded. The coordinates of each individual 

ipsilateral axon and the area occupied by the contralateral axons in the SC were represented 

in a gridwork schematized with Adobe Illustrator CS3 software.

Statistical analyses

Data were plotted in Excel software (Microsoft) and analyzed with GraphPad Prism 5. 

Means and standard error of means (SEM) were calculated for each group. Data were 

statistically analyzed using Mann-Whitney U test, ANOVA, or Kruskal–Wallis one-way 

analysis of variance, where appropriate. p values smaller than 0.05 were considered 

significant.

RESULTS

In the mouse, the first RGCs are born in the dorsocentral (DC) retina. Some of these RGCs 

projecting ipsilaterally and others contralaterally, and the two subpopulations are intermixed 

within the DC retina before E15.5. The axons of each population reach the ventral 

diencephalon, where the optic chiasm forms, at E12.75, and by E13.5 they project to the 

optic tract (OT) (Marcus et al., 1995). The transient nature of the ipsilateral projection from 

the DC retina has been described (Colello and Guillery, 1990; Petros et al., 2008), but the 

extent of axon growth past the chiasm into the OT has not been documented. Here we used 

DiI labeling and electroporation of GFP to chronicle how far distally the early ipsilateral 

RGCs extend, the proportion of ipsilateral versus contralateral projections over time, and 

whether these RGCs innervate dorsal Lateral Geniculate Nucleus (dLGN) and Superior 

Colliculus (SC) targets.
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DiI labeling of the transient ipsilateral RGC projection from central retina

To determine how far the contralateral and ipsilateral axons of the DC RGCs project in the 

early period of RGC axon growth, we labeled RGC axons by placing DiI on the optic nerve 

head of one retina in E13.5 and E14.5 embryos and measured the extent of the ipsilateral 

and contralateral projection from the DC retina in brain sections. After E15.5, however, 

since the retinal projection includes axons from the central retina (and not only from the DC 

retina as in previous ages) as well as the permanent ipsilateral RGCs from VT retina 

(Colello and Guillery, 1990), we labeled only the DC retina at E15.5 to selectively visualize 

the early ipsilateral component in Fig. 1A–D, G. As previously reported (Marcus and 

Mason, 1995), we found that the ipsilateral axons are the first to reach the OT by E12.75 

(data not shown). The extent of the retinal axons was measured along the length of the OT 

from the ventral midline to the distal most axonal tips. Since the DC ipsilateral axons are the 

first retinal cohort to reach the OT, and assuming that ipsilateral and contralateral axons 

grow at the same rate, we predicted that the DC retinal ipsilateral axons would extend 

farther than the contralateral axons at early ages. However, surprisingly, we found that the 

central retinal ipsilateral axons extend to a similar distance as the contralateral axons in the 

OT at E13.5, but by E14.5 and E15.5, the contralateral cohort projects past the ipsilateral 

cohort (Fig. 1C, G). There was no statistically significant difference in extent of axon 

growth between these two populations at E13.5 (ipsilateral: 1616 μm ± 149, contralateral: 

1513 μm ± 153, Mann Whitney p= 0.54, n= 7 embryos) (Fig. 1D). At E14.5 and E15.5 there 

is a trend for the contralateral axons to project farther than the DC ipsilateral axons (E14.5, 

ipsilateral: 1783μm ±124, contralateral: 2325μm ±85, n=4; E15.5, ipsilateral: 1443μm ±170, 

contralateral: 3076μm ±108, n=5. At E14.5 and E15.5, the difference between the extent of 

growth of ipsilateral and the contralateral axons from DC retina was statistically significant 

(Mann Whitney E14.5, p= 0.029; E15.5, p= 0.0079). It is important to note that whereas the 

contralateral axons continue to extend more caudally, the distal extent of the DC ipsilateral 

axon projection remains relatively constant, with the majority reaching only below the future 

dLGN, and remaining at this relative distance from E13.5 to E15.5 (p= 0.47). The extent of 

contralateral axon growth, on the other hand, increases over this period, (p= 0.0014).

In addition to revealing the limits of projection of DC ipsi- and contralateral RGC axons at 

these two stages, DiI labeling along with DiA labeling of the other eye revealed the 

relationship between the ipsilateral and contralateral fibers from each eye (Fig. 1E–G). We 

found that the DC ipsi- and contralateral axons were segregated in the OT (Fig. 1F–G). At 

E13.5, the ipsilateral DC RGC axons occupy a more medial position in the OT compared 

with the contralateral RGCs (Fig. 1F). Labeling of the DC retina at E15.5 indicated that 

most of the ipsilateral axons from this retinal region continue to occupy the medial-most 

position in the OT, but a few are positioned in the contralateral RGC territory (Godement et 

al., 1984) (Fig. 1G). In these preparations, a reduction in number of DC ipsilateral axons in 

the OT from E13.5 to E15.5 is also apparent (Fig. 1F–G).

Quantification of DiI fluorescence intensity enables inference of the relative abundance of 

axons in a tract, but cannot provide information on the actual number of axons. The 

percentage of ipsilateral axons relative to contralateral at E14.5 in the OT was previously 

estimated to be 8% by DiI anterograde labeling (Erskine et al., 2011), but this value was not 
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known for ages E13.5 and 15.5. Therefore, we next estimated the percentage of ipsilateral 

axons in the proximal OT at these ages, in each case labeling the entire RGC projection by 

placing a crystal on the optic nerve head and inferring values from pixel intensity of DiI 

labeling (Erskine et al., 2011) (Fig. H–L). Measures were taken at three areas along the OT: 

500, 750, and 1000 μm from the ventral midline in frontal sections. First, we determined 

whether there was a statistically significant difference in the ipsilateral ratio (iROI/ (iROI + 

cROI)) for the brains examined at E13.5 within these three areas (n = 6 embryos; E15.5, n=7 

embryos). As there was no difference in the ipsilateral ratio in the three OT segments 

(E13.5, p= 0.12; E15.5, p=0.13), the ipsilateral ratios from the three areas were averaged, 

and one mean value per case was considered. In whole eye-labeled preparations at E13.5, 

the first age at which RGC axons are seen within the OT, the ipsilateral RGC axons were 

estimated to comprise 20.07% of the total RGC labeled axon population in the OT (± 1.09, 

n=6) (Fig. 1H–J). By E15.5, there was a dramatic decrease in the overall proportion of 

ipsilateral to contralateral axons in the OT to 5.32% (± 0.88, n=7), even with the addition to 

the ipsilateral projection in the OT of the permanent ipsilateral axons from VT retina (Fig. 

1H, K–L).

The ipsilateral RGC axons in the OT comprise a heterogenous population of DC and VT 

RGCs. Nevertheless, most of these ipsilateral axons occupy the lateral-most territory of the 

OT where the ventrotemporal ipsilateral RGC axons are located (Godement et al. 1984, 

Sitko and Mason, unpublished). A few fibers continue to occupy a medial position in the 

OT; these are presumably the DC ipsilateral axons, as they are seen only after DiI labeling 

of the DC retina (Fig. 1L).

Thus, ipsilateral axons from the DC retina are the first to enter the OT at E12.5, and the 

contralateral RGC axons reach the OT at E13.5, confirming previous reports (Marcus and 

Mason, 1995). Even though the ipsilateral axons are the first to arrive in the OT, after E13.5 

they are overtaken in their extent by the contralateral axons. These two populations of DC 

retina RGC axons are well segregated at E13.5 in their position in the OT, with the 

ipsilateral axons medially and the contralateral laterally. At early stages of development 

(E13.5–14.5) the DC ipsilateral RGC cohort comprises a greater proportion of the RGC 

axons within the OT relative to contralateral axons (Fig. 1H–J) and by E15.5 the total 

ipsilateral projection (including the DC transient ipsilateral projection (Fig. 1G) as well as 

the first axons to extend from the permanent VT ipsilateral cohort (Fig. 1L)) decreases 

relative to the contralateral RGC axons (Fig. 1H).

Prospective labeling of RGCs by early electroporation of GFP

Prospective labeling, i.e., “fate mapping”, of axon projections is difficult to perform with 

DiI, especially at postnatal ages when DiI is less effective as an axonal marker. To trace the 

projection of RGC axons from the DC retina prospectively, we electroporated membrane-

bound green fluorescent protein (GFP) into embryonic retinas in utero at E12.5, allowing 

RGC labeling in vivo and visualization of RGC axons at selected later stages of 

development, into the postnatal period. E12.5 is the earliest age at which it is technically 

feasible to label the retina without labeling the brain, since before that age, the subretinal 

space is connected to the brain ventricles. The injection and electroporation of a GFP 
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plasmid into the subretinal space at E12.5 predominantly targets RGC precursors in the 

central retina (Garcia-Frigola et al., 2007; Petros et al., 2009) (Fig. 2A–B). In our 

experiments, the central retina including both the dorsal and ventral central regions was 

consistently labeled with GFP. Thus, in utero electroporation of GFP at E12.5 labels a 

cohort of RGCs different from those labeled with DiI as described above. While DiI labels 

most of the RGCs projecting to the brain at the time of DiI application, electroporation of 

GFP in the subretinal space at E12.5 labels progenitor cells that will differentiate into RGCs 

a day or two later, and allowing prospective examination of RGC axon projection at later 

ages.

Embryos were collected at E14.5, 15.5, 16.5, P0, and P4. To determine whether the GFP 

signal from a standard injected concentration of GFP plasmid, deteriorated through time 

after electroporation, pixel intensity in the GFP+ area in the retina was measured in retinal 

whole mounts at the time points listed above. The pixel intensity was similar across the ages 

examined, with no statistical difference (Min: 0, Max: 255, Mean: 40.3 ± 2.26, p= 0.078, n = 

30). This argues against the possibility that the observed decrease in ipsilateral RGC axons 

over time is a consequence of loss of GFP expression. Moreover, the contralateral projection 

is strongly labeled with the membrane-bound GFP in the most distal point of their extent, 

implicating that the GFP signal remains robust from E12.5 until P4, and that this prospective 

labeling technique is valid and useful for developmental studies.

After electroporation of GFP at E12.5 into the central retina, axons of GFP+ RGCs were 

seen to reach the diencephalon at E14.5 (Fig. 2C), and these axons were usually tipped with 

growth cones (Fig. 2C′). One day later, at E15.5, ipsilateral RGC axons (Fig. 2D) make a 

turn away from the ventral midline into the OT both in the medial (Fig. 2D, arrows) and 

lateral OC (Fig. 2D, arrow heads), and many axons were positioned in the ipsilateral and 

contralateral OT.

Even though only a subset of RGCs are labeled with this technique, after E14.5 we were 

able to quantify the relative number of ipsilateral RGC axons in the proximal portion of the 

OT (Fig. 3A, CA), as in Figure 3C-C′. The number of ipsilateral axons varies from E15.5 to 

P4 (p= 0.0092) and at E15.5 and E16.5 is rather similar (E15.5: 8.02 ± 2.60, n=6; E16.5: 

8.81 ± 2.91, n=7, p= 1) but after E16.5, this number declines (E17.5: 2.64 ± 1.11, n=6; P0: 

1.38 ± 0.75, n=6; P4: 0.36 ± 0.23, n=5). The decline is more accentuated when comparing 

the number of ipsilateral axons in the OT between E16.5 and P0 and P4 (E15.5 vs E17.5: 

p=0.12; E15.5 vs P0: p=0.0505; E15.5 vs P4: p= 0.040; E16.5 vs E17.5: p= 0.10; E16.5 vs 

P0: p=0.014; E16.5 vs P4: p=0.0025) (Fig. 3B).

Next we determined how far the ipsilateral RGC axons electroporated at E12.5 project from 

E14.5-P4, and whether they invade the SC and/or dLGN. We quantified the number of 

axons in 500μm sectors along the OT from the ventral midline to their most dorsal extent at 

4000 μm in frontal sections (Fig. 4A, B). A greater number of central retinal ipsilateral 

axons is in the proximal optic tract at E15.5 and E16.5 than at later ages (Fig. 4C, G, H), but 

their number is still markedly lower than the contralateral RGC axons from the same cohort 

of electroporated RGCs (Fig. 4E), and few of these axons extend beyond 3000μm distal to 

the midline. In Fig. 4D, at E16.5, a central retinal ipsilateral axon with a growth cone, and 
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therefore presumably still extending, is seen in the OT (Fig. 4D, arrow). At E17.5 and 

thereafter the number of axons decreases but the remaining axons extend farther than at 

earlier ages (Fig. 4G, H). There was no evidence of axonal degeneration, i.e., large axonal 

swellings disconnected from neurites.

Thus, the DC retinal RGCs, electroporated at E12.5 with GFP reach the OT after E14.5. The 

central retinal ipsilateral RGC axons from this group of cells project along the OT primarily 

between E15.5 and E16.5. Subsequently, their number decreases abruptly. At the time of 

decline of central retinal ipsilateral RGC axon number, E16.5 to E17.5, and prior to this 

time, most axons do not seem to have projected to the SC.

Target entry of RGC axons electroporated at E12.5

Previous studies in rat indicated that the central retinal RGC axons project to the SC at 

postnatal ages (Cowan et al., 1984) but whether the central retinal ipsilateral RGC axons 

project to this and other targets is not clear (Godement et al., 1980; Godement et al., 1984). 

In the brains electroporated at E12.5 and analyzed up to P4, we determined the extent of the 

contralateral and ipsilateral RGC axonal projection from the central retina to targets such as 

the dLGN and SC. At postnatal ages the RGC axons reach the LGN and SC roughly at the 

same time but enter and arborize later in the dLGN than in the SC (Dhande et al., 2011). We 

observed that very few electroporated RGC axons enter the LGN area at E16.5 and E17.5, 

and bifurcate with short branches along the dorso-ventral axis of the dLGN, both the central 

retinal contralateral (Fig. 5A, C) and ipsilateral RGC axons (Fig. 5B, D). Nevertheless, 

while contralateral axons begin to show further complexity within the dLGN by P0 (Fig. 

5E), ipsilateral axons continue to display simple morphology (Fig. 5F), similar to that seen 

during prenatal ages, and never increase in number. At P4 the contralateral axons have very 

complex arbors that are focused in the appropriate topographic retino-recipient region in the 

dLGN for the DC retina (Pfeiffenberger et al., 2005) (Fig. 5G, arrow). Again at P4, the 

ipsilateral RGC axons display morphologies similar to that seen at previous stages, i.e., 

simple relatively unbranched terminations (Fig. 5H).

The SC is the first target in the brain to receive retinal projections, with the earliest axons 

entering at E15.5 (Godement et al., 1984). In mouse, from E16.5 to P0 RGC axons extend in 

the SC, overshooting their topographically appropriate target (McLaughlin and O’Leary, 

2005). Only at P2 do they start to form branches in the topographically appropriate area in 

the SC. At P4, RGCs begin to prune branches projecting outside the final target area. This 

refinement process is established by P10 (Feldheim and O’Leary, 2010). In the cohort of 

RGCs electroporated at E12.5, the first axons reach the rostral SC at E16.5 and invade the 

SC at E17.5 (Fig. 6). At E17.5 the RGC axons project to the most superficial dorsal area of 

the SC but do not invade the inner-most area of the SC, in agreement with previous reports 

(Godement et al., 1984). The central retinal ipsilateral RGC axons electroporated at E12.5 

project to the rostral-most area of the SC (Fig. 6A, A′), while the contralateral axons project 

more caudally (Fig. 6A–C). By P0, the contralateral RGC axons occupy most of the SC, and 

invade deeper layers of the SC than at E17.5 (Fig. 7A).

In order to better visualize the rostral-caudal distribution of the RGC axons in the SC, a 

schematic reconstruction of the SC was created, showing the area occupied by the central 
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retinal contralateral axons in green, and individual central retinal ipsilateral RGC axons as 

red tracings (Fig. 7E–J). At P0, the few remaining ipsilateral RGC axons from the central 

retina project more caudally in the SC compared with E17.5, but do not project as far 

caudally as the contralateral axons in the same cohort of electroporated RGCs (Fig. 7B, E–

G). Only by P4 do the central retinal ipsilateral RGC axons reach the caudal SC. At the same 

age, it is possible to notice a slight decrease in the contralateral RGC axon territory, likely 

reflecting pruning of the axons outside of the appropriate topographic area (Fig. 7H–J). Both 

central retinal contralateral and ipsilateral axons do not show complex branches at P0, when 

compared with axons at P4. At P4, the contralateral RGC axons form complex arbors in a 

specific area in the SC (Fig. 7C). A few ipsilateral axons formed a branched arbor but others 

were much more simple (Fig. 7D, H–J).

Thus, the central retinal ipsilateral and contralateral RGC axons electroporated in the retina 

at E12.5 show quite different behaviors projecting to and within their targets. Although the 

contralateral and ipsilateral axons extend past the dLGN by E17.5, neither population enters 

the dLGN until after E17.5. The few ipsilateral axons that do enter have only simple 

branches through P4, while the contralateral axons form full arbors by that time. In the SC, 

the ipsilateral RGC axons project into this target later (P0) than the contralateral RGC axons, 

and although they branch, they do not reach the same complexity at P4 as the contralateral 

axons.

DISCUSSION

Using DiI labeling and in utero electroporation of GFP, we have followed the progression 

and waning of the transient ipsilateral retinal ganglion cell (RGC) axons projecting from the 

dorsocentral (DC) and central retina in the early period of RGC axon growth. As seen by DiI 

labeling, the ipsilateral RGC axons projecting from the DC retina at E13.5 comprise a 

greater proportion of axons extending in the OT compared with the contralateral axons at 

that time and compared with the RGC axons forming the permanent ipsilateral projection 

from the VT retina. Subsequently there is a precipitous drop in the proportion of ipsilateral 

to contralateral RGC axons that originate in the DC retina. RGC precursors that are 

electroporated in the central retina at E12.5, enter the OT at E14.5 and that can be followed 

until P4, display similar timing of elimination. The ipsilateral RGC axons observed after 

both labeling paradigms the DC/central retina seem to disappear through a process 

independent of interactions with their targets since so few of the ipsilateral RGC axons 

observed in this study ever reach targets in the brain beyond the dorsal OT just rostroventral 

to the LGN. While the mechanism of the disappearance of the early ipsilateral RGC axons is 

not understood, these data provide a more detailed picture of the ephemeral ipsilateral RGC 

projection than in previous studies.

After ipsilateral RGC axons from the DC retina reach the proximal optic tract, their number 
falls abruptly

The disappearance of ipsilateral RGC axons from the DC retina has been acknowledged, but 

previous studies analyzed this projection in mice with whole eye anterograde labeling with 

HRP (Godement et al., 1987), retrograde labeling from the OT with DiI and examined only 
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the retina (Colello and Guillery, 1990), or by retrograde labeling from the SC with Fast Blue 

dye in rats (Cowan et al., 1984). None of these studies measured the extent and targeting of 

the transient DC retinal ipsilateral projection during the early stages of development. In our 

measures of the extent of projection of the early RGC projection from E13.5 to E15.5 using 

anterograde DiI labeling, we found that the distance to which the majority of the early DC 

ipsilateral RGC axons project is stable over the first few days of growth, indicative of 

stalling, while the contralateral RGC axons labeled at the same ages progress more distally 

in the OT. Since the development of the retinal projection is a dynamic process and we 

analyzed DiI labeling in fixed tissue, we could not determine with certainty whether any of 

the early DC ipsilateral RGC axons target the SC and retract. Nevertheless, in our analysis, 

the ipsilateral RGC axons from both the DC and the central retina from labeling by 

electroporation extended only up to the ventral aspect of the future dLGN. Live imaging in 

semi-intact preparations or in utero would resolve whether RGC axons project any farther or 

retract after reaching the SC.

At E13.5, the proportion of ipsilateral RGC axons within the OT compared to contralateral 

axons is 20% of the total projection as estimated from DiI labeling, whereas by E15.5 the 

relative proportion of ipsilateral RGC axons is only 5%. This early higher percentage of 

ipsilateral axons, when RGCs project only from the DC retina, can be explained by two 

hypotheses that are not mutually exclusive. First, the DC ipsilateral RGC axons take a 

shorter path from the optic nerve to the OT (Fig, 2D) and populate the OT before the DC 

contralateral RGC axons that are still crossing the midline at E12.75. Thus, the proportion of 

DC ipsilateral RGC axons is relatively high at E13.5 when compared with the DC 

contralateral RGC axons. Second, the ipsilateral-to-contralateral ratio of 20% could be due 

to an inaccurate early midline crossing, as a consequence of the immaturity of the OC and its 

factors that selectively attract/repel selected populations of axons from the midline at E13.5. 

The DC ipsilateral RGC axons enter the chiasm region at E12.75 when the chiasm expresses 

the repellant EphrinB2 at low levels (Williams et al., 2003). However, the early DC 

ipsilateral RGC axons do not grow close to the midline and thus should not interact with this 

cue, even though the early DC RGCs express EphB1 at E13.5 (Marcus and Mason, 1995; 

Williams et al., 2003).

In the optic tract, the first DC ipsilateral RGC axons are segregated from the DC 
contralateral RGCs

At E13.5 the DC ipsilateral RGCs are the first to grow into the OT, and occupy the most 

medial position in the OT. As the DC contralateral RGC axons enter the tract, they course 

lateral to the ipsilateral RGCS. At this early age, it is striking that the two populations are 

segregated from one another. This lateral-medial organization might simply reflect a 

chronotopic mode of growth, as found in the ferret visual system (Walsh and Guillery, 

1985), with each successive cohort layering on top of the previously extending cohort. In 

support of chronotopic organization of different RGC axon cohorts, the permanent 

ipsilateral RGCs from VT retina project later and occupy an even more lateral position in the 

OT compared with contralateral RGC axons (Godement et al., 1984); Sitko and Mason, 

unpublished).
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The ipsilateral-contralateral segregation of axons in the OT is relevant to the suggested role 

of the earliest RGC axons as pioneers of the OT, readily experimentally analyzed in 

zebrafish (Pittman et al., 2008) and insect (Raper and Mason, 2010). Axon-axon interactions 

have been proposed to be a mechanism underlying axon order in tracts that then mediate 

segregated targeting (Imai and Sakano, 2011). However, our data argues against the 

hypothesis that the first ipsilateral RGC axons that project to the OT at E13.5 pioneer the OT 

by axon-axon interactions. The segregation of the early ipsi- and contralateral RGC axon 

cohorts in the OT may reflect homotypic interactions among fibers of each subpopulation 

rather than axon-axon interactions across these two populations as would be expected if the 

early ipsilateral fibers played a pioneering role.

Difference in innervation of targets by early ipsilateral versus contralateral RGCs from the 
central retina

Electroporation in utero of a GFP plasmid at E12.5 targeted the central retina and allowed 

visualization of the retinal projections from the central retina to both sides of the brain. We 

described two differences in target innervation between the projections of the early 

ipsilateral and contralateral central retinal RGCs. First, while central retinal contralateral 

RGC axons project to the dLGN after P0 and make complex arbors by P4, the ipsilateral 

RGC axons project only short branches to the dLGN that branch minimally, if at all. A 

previous study that labeled RGCs in the peripheral retina by electroporation at postnatal ages 

found no difference in the features of dLGN innervation by the contralateral and ipsilateral 

axons, especially their morphology, although they noted that arborization of RGC axons in 

the dLGN at P4 lagged behind the arborization in the SC by almost one week (Dhande et al., 

2011). However, in the Dhande study the permanent ipsilateral RGCs from the VT retina 

were visualized, whereas in our study the transient ipsilateral RGCs in DC/central retina 

were labeled. Second, there is a delay in the progression of the central retinal ipsilateral 

RGC axons in the OT from E15.5 to E17.5 and in the rostral-caudal axis of the SC at P0, 

compared with the extension of the contralateral axons electroporated in the same cohort. 

Nonetheless, the timing of branching in the SC seems similar in both contra- and ipsilateral 

populations. The strategy of innervation of RGC axons to their targets seems to change 

throughout development (Osterhout et al., 2014). Early-born RGC axons that project as early 

as E15.5 innervate multiple targets and subsequently retract the projections from 

inappropriate targets. However, later-born RGC axons accurately project to their appropriate 

and final targets. Various RGC subtypes have different birth dates, molecular markers, 

projections and functional roles (Hong et al., 2011; McNeill et al., 2011; Osterhout et al., 

2011; Osterhout et al., 2014; Triplett et al., 2014). To date, molecular markers for the 

transient ipsilateral RGCs from DC and central retina are lacking and thus it is not clear 

whether the transient RGCs observed in the present study have a distinct molecular profile 

or belong to a RGC subtype. Judging from the time of their projection, the transient 

ipsilateral RGCs labeled from the DC retina with DiI and the central RGCs electroporated 

with GFP at E12.5 could belong to the first group of early-born, early-projecting, non-

imaging forming RGCs expressing cadherin 3 and cadherin 4 that project from the DC retina 

at E14.5 (Osterhout et al., 2014).
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Mechanisms of elimination of transient axonal projections

Several mechanisms for the disappearance of axonal projection can be invoked. Caspases 

have been newly implied in non-apoptotic roles such as pruning of axonal branches (Simon 

et al., 2012; Campbell and Okamoto, 2013). We attempted to determine whether caspase 3 

and 6 are expressed in the contralateral and ipsilateral RGC axons when they are in the optic 

tract and approach the dLGN, with and without GFP labeling. Although a few retinal cells 

expressed caspase 3, we were not successful in detecting these proteins in RGC axons, and 

thus cannot implicate this mechanism for RGC axon transience. One explanation for the 

inability to retrogradely label the transient ipsilateral RGC projection is that RGC cell bodies 

migrate away from the DC region (Guillery et al., 1995) . This hypothesis is unlikely since 

when the central retina was electroporated at E12.5 and observed later, no labeled RGCs 

were observed in the peripheral retina.

The elimination of axonal projections in inappropriate targets has been attributed to the 

absence of appropriate trophic factors in the target (Lom and Cohen-Cory, 1999; Yamaguchi 

and Miura, 2015), or the absence of appropriate receptors or trophic factors in the growing 

neurons themselves (Cohen-Cory et al., 2010; Harvey et al., 2012). In support of these 

hypotheses, growing RGC axons have an intrinsic supply of neurotrophic factors supporting 

growth toward targets but when axons reach their target they become dependent on target-

derived neurotrophic factors (Spalding et al., 2004; Marshak et al., 2007). The ipsilateral 

RGC axons that we electroporated at E12.5 in the central retina grow more slowly than the 

contralateral RGC axons, and the slower progression could reflect a reduced intrinsic supply 

of neurotrophic factors before reaching the target. In addition, we did not observe the 

majority of early-projecting ipsilateral RGC axons reaching their first retinal target, the SC, 

or entering the dLGN, implying that the DC and central retinal ipsilateral axons do not 

perceive target-derived neurotrophic factors that would ensure their progression toward and 

entry to the target and/or survival.

Other mechanisms underlying the disappearance of this projection include interactions with 

glial cells in the OT or between the ipsi- and contralateral cohorts within the OT. The central 

retinal contralateral RGC axons might express factors at their surface important for support 

from OT astroglia, or microglia (Pont-Lezica et al., 2014), that precludes the ipsilateral 

cohort from fasciculating in the optic tract with the contralateral cohort. However, to date, 

we have not been able to distinguish early DC ipsilateral from contralateral RGCs by 

transcription factor expression or surface molecules (our unpublished data).

Summary and Conclusions

Anterograde Dii labeling and in utero electroporation of GFP have provided new details on 

the transient ipsilateral projection from the retina distal to the optic chiasm and visual targets 

in the brain. DiI provides a snapshot of the early stages of RGC axon growth from the DC 

retina and GFP electroporation at E12, a prospective chronicle of the extent, targeting and 

disappearance of the transient ipsilateral RGC projection from the central retina. Both 

approaches have shown for the first time that the majority of the transient ipsilateral RGC 

axons do not innervate targets, and provides precise spatiotemporal information on their 
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disappearance. This study will provide a basis for further analysis of this transient projection 

by fate mapping, and investigation of the mechanisms underlying its elimination.
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Figure 1. Retinal ganglion cell axon projections in the first stage of extension – DiI labeling
(A, B) DiI was applied to the retina of fixed mouse embryos to visualize retinal ganglion cell 

(RGC) projections to the brain, either to the whole retina at E13.5 and E14.5 (left) or only to 

the dorsocentral (DC) retina at E15.5 (right, and B). (C) DiI labeling in the ipsilateral and 

contralateral optic tracts at E15.5 when only the DC is labeled. (D) The distance that RGC 

axons extend from the ventral midline to the dorsal thalamus over time. While the extent to 

which the contralateral RGC axons project varies from E13.5 to E15.5 (p= 0.0014), the 

extent of the ipsilateral RGC projection does not (p= 0.47). Each mark = a single brain, 

horizontal bar = mean, p< 0.05. (E–G) DiI or DiA was applied in fixed embryos, to the 

entire retina at E13.5, when only RGCs from DC retina extend axons, and to the DC retina 
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at E15.5, and the brain sectioned frontally. (F) At E13.5, DC ipsilateral axons occupy a 

more medial position in the OT compared with contralateral RGCs. (G) At 15.5, most DC 

ipsilateral RGC axons continue to occupy the medial-most position in the OT (arrow) but a 

few ipsilateral axons are positioned in the lateral OT mingled with contralateral axons 

(arrowhead). (H) DiI crystals were applied to the whole retina at E13.5 and E15.5, and the 

embryos were sectioned frontally. The proportion of ipsilateral to contralateral RGC axons 

was estimated from pixel intensity (PI) of DiI in the Region of Interest (ROI) within the OT: 

PI ipsilateral ROI / (PI ipsilateral ROI + PI contralateral ROI) × 100, expressed as a 

percentage. The ipsilateral RGCs within the OT at E13.5 represent 20.07% (±1.09), n=6, of 

the total projection in both OTs. At E15.5 the percentage of ipsilateral RGCs decreases to 

5.32% (±0.88), n=7. p= 0.0012. Data represents mean ± SEM. (I–L) Representative frontal 

sections through the contra and ipsilateral OT after DiI labeling of the optic nerve head in 

fixed brains at E13.5 and E15.5, performed as in A. Note that at E15.5 (K, L), the entire 

retinal projection was labeled, and thus includes the transient ipsilateral axons from central 

retina and the permanent ipsilateral RGCs from ventrotemporal retina. (M) Schematic 

representation of the extent and relative number of retinal projections from the midline to 

the optic tract (OT) and superior colliculus (SC). At E13.5 when the first axons project to 

the OT, the ipsilateral and contralateral projections project to the same distance. After E14.5 

the contralateral projection projects farther than the ipsilateral axons. *p< 0.05, ** p< 0.01. 

SC: superior colliculus, OT: Optic tract, ROI: region of interest. D/L/M/V: dorsal, lateral, 

medial, and ventral. All scale bars= 100μm.
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Figure 2. Electroporation of GFP into the central retina at E12.5 labels RGCs that cross the 
midline at E14.5
(A) Mouse embryos are electroporated in utero with a GFP plasmid in the subretinal space 

at E12.5. Right scheme shows frontal section of eye through the optic nerve indicating the 

site of electroporation in the central retina. (B) Retinal whole mount at E16.5 confirming 

that only the central area of the retina is targeted with GFP (outlined area). (C, C′) Left, 

scheme of E14.5 retina, optic nerves and chiasm. Center, in a whole mount of the ventral 

diencephalon, axons of RGCs electroporated at E12.5 reach the optic chiasm (OC) midline 

at E14.5 and have growth cones. This suggests that the cohort of RGCs targeted by 

electroporation at E12.5 have not yet extended axons at the time of electroporation and reach 

the OC two days later. (D, D′) Left, scheme of E15.5 retina, optic nerves and chiasm. 

Center, whole mount; many more RGCs from the central retina have crossed or turned away 

from the midline. Some ipsilateral axons turn more medially in the OC (arrows) while others 

exit the chiasm more laterally (arrowheads) (D′). White dashed vertical line: optic chiasm 

midline. D/N/T/V: dorsal, nasal, temporal, and ventral. C/L/M/N/R: caudal, lateral, medial, 

nasal and rostral. All scale bars= 100μm.
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Figure 3. In the cohort of RGCs electroporated with GFP at E12.5, the number of DC ipsilateral 
axons decreases after E16.5
(A–B) After electroporation of GFP plasmids into E12.5 retina (see Fig. 2), the number of 

GFP-labeled ipsilateral RGC axons was quantified in 500 micron sections through and 

caudal to the optic chiasm (OC) at ages E15.5-P4. (B) The number of ipsilateral axons in the 

optic tract (OT) progressively decreases after E16.5 to nearly 0. Horizontal bars = mean. 

Mann Whitney test E15 vs P4 p=0.0398; E16 vs P0 p= 0.0140; E16 vs P4 p= 0.0025. (C) An 

example of the area selected for quantification at E16.5 with ipsilateral axons electroporated 

with GFP at E12.5 shown at higher magnification in Fig. 3C′. *p< 0.05, ** p< 0.01. 

D/L/M/V: dorsal, lateral, medial, and ventral. All scale bars = 100μm.
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Figure 4. In the cohort of RGCs electroporated with GFP at E12.5, only a few central ipsilateral 
axons project distal to the optic tract after E16.5
(A) Schema of brain indicating sampling of frontal sections through the optic chiasm (OC), 

lateral geniculate nucleus (LGN) and a rostral section through the superior colliculus (SC). 

(B) Schema of the RGC axon projection in the brain in frontal view, indicating the distance 

measured from the OC midline through the optic tract (OT) to dLGN and SC targets. (C–F) 

The optic tract at different distances from the ventral midline, at E16.5. (C) Few GFP+ 

axons from RGCs from the central retina are in the proximal ipsilateral OT at E16.5 

compared with the contralateral projection (C, D vs E, F). (D) In the same cases as in C., the 

few ipsilateral axons that extend along the OT have growth cones. (E) At E16.5, many GFP+ 

RGC axons project contralaterally. (F) The contralateral RGC axons project further along 

the OT than the ipsilateral RGC axons (G) The number of central retina ipsilateral RGC 
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axons was quantified in contiguous 500μm sectors beginning from the ventral midline to the 

SC. A greater number of ipsilateral axons from the central retina are in the proximal optic 

tract at E15.5 and E16.5 than at later ages, but few axons extend beyond 3000 μm from the 

midline. After E16.5 only a few ipsilateral axons extend farther. (H) Scheme of the 

contralateral and ipsilateral axons labeled by electroporation at E12.5 in the central retina, 

by number and length, from E15.5 to P4. The darker shaded bars represent the LGN and the 

SC. The contralateral axons from the central retina extend toward and reach targets 

compared with ipsilateral axons from the central retina at the same developmental stage. 

dLGN: dorsal lateral geniculate nucleus, OT: optic tract, SC: superior colliculus. D/L/M/V: 

dorsal, lateral, medial, and ventral. All scale bars= 100μm.
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Figure 5. Few ipsilateral RGCs electroporated at E12.5 in the central retina project to the dorsal 
lateral geniculate nucleus
(A–H′) Frontal sections through the dorsal lateral geniculate nucleus (dLGN) at E16.5, 

E17.5, P0 and P4, after electroporation of GFP into the central retina at E12.5 (see Fig. 2). 

(A–B′) At E16.5, central retinal axons project contralaterally (A) or ipsilaterally (B) in the 

optic tract, adjacent to the future dLGN. Few contralateral axons project into the dLGN area. 

(B, B′). In B′, one axon sends a short branch (arrow) to the dLGN. (C–D′) At E17.5 only a 

few contralateral and ipsilateral central retinal RGC axons project short branches into the 

dLGN (arrows). (E–F′) At P0, contralateral RGC axons enter the dLGN while the few 

ipsilateral axons from the central retina that remain have modest projections to the LGN 

(arrow). (G–H′) At P4 the contralateral projections from the central retina form complex 

branched arbors in a medial patch of the dLGN (G, arrow) and ventral LGN (G, arrowhead). 

(H, H′) On the opposite side of the brain, the ipsilateral RGC axons have a morphology 

similar to ipsilateral axons at P0, i.e., simple arbors with only a few short branches. 

D/L/M/V: dorsal, lateral, medial, and ventral; LGN, lateral geniculate nucleus. All scale 

bars= 100μm.
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Figure 6. Few RGCs electroporated at E12.5 in the central retina project to the superior 
colliculus at E17.5
(A–D) Frontal sections through the superior colliculus (SC) at E17.5, 200μm apart (D), 

displaying RGC axons electroporated with GFP at E12.5 in the central retina. The 

contralateral RGCs target along the rostral-caudal axis of the SC at E17.5 (A–C) while the 

ipsilateral counterparts project into the SC in a more rostral portion of the SC (A′). 

C/D/L/M/R/V: caudal, dorsal, lateral, medial, rostral, and ventral. All scale bars= 100μm.
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Figure 7. Some ipsilateral RGCs electroporated at E12.5 in the central retina project to and 
arborize in the superior colliculus at P0 and P4
(A–D) Frontal section of the superior colliculus (SC) at P0 and P4 after electroporation of 

GFP into central retina at E12.5. (A–B) At P0, the contralateral RGCs electroporated in 

central retina project to most of the SC (pale green shaded area). At the same age, only a few 

central retina ipsilateral axons, with simple morphology, are seen (B and B′). (C–D) At P4, 

many more contralateral axons projecting into the SC are branched when compared with 

RGC axons P0. The few ipsilateral axons projecting into the SC are also more branched than 

at P0. (E–J) Reconstruction of projections to the SC of RGCs electroporated at E12.5 in the 

central retina. Each square represents a 100 × 100μm area in the SC. The green shading 
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represents the area occupied by the electroporated contralateral RGCs. The red tracing 

represents individual ipsilateral RGC axons in the same cases in which the contralateral 

projections were estimated. At P4, ipsilateral axons project more caudally in the SC and 

have more branches when compared with P0. Note that the electroporated central ipsilateral 

RGC axons project to the lateral SC unlike the permanent ipsilateral RGCs from 

ventrotemporal retina, which project medially (not shown). C/D/L/M/R/V: caudal, dorsal, 

lateral, medial, rostral, and ventral. All scale bars= 100μm.
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