3,053 research outputs found
Rapidly Rotating Fermi Gases
We show that the density profile of a Fermi gas in rapidly rotating potential
will develop prominent features reflecting the underlying Landau level like
energy spectrum. Depending on the aspect ratio of the trap, these features can
be a sequence of ellipsoidal volumes or a sequence of quantized steps.Comment: 4 pages, 1 postscript fil
Computing with cells: membrane systems - some complexity issues.
Membrane computing is a branch of natural computing which abstracts computing models from the structure and the functioning of the living cell. The main ingredients of membrane systems, called P systems, are (i) the membrane structure, which consists of a hierarchical arrangements of membranes which delimit compartments where (ii) multisets of symbols, called objects, evolve according to (iii) sets of rules which are localised and associated with compartments. By using the rules in a nondeterministic/deterministic maximally parallel manner, transitions between the system configurations can be obtained. A sequence of transitions is a computation of how the system is evolving. Various ways of controlling the transfer of objects from one membrane to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied. Membrane systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems once future biotechnology gives way to a practical bio-realization. In this paper we survey some interesting and fundamental complexity issues such as universality vs. nonuniversality, determinism vs. nondeterminism, membrane and alphabet size hierarchies, characterizations of context-sensitive languages and other language classes and various notions of parallelism
Drip and Mate Operations Acting in Test Tube Systems and Tissue-like P systems
The operations drip and mate considered in (mem)brane computing resemble the
operations cut and recombination well known from DNA computing. We here
consider sets of vesicles with multisets of objects on their outside membrane
interacting by drip and mate in two different setups: in test tube systems, the
vesicles may pass from one tube to another one provided they fulfill specific
constraints; in tissue-like P systems, the vesicles are immediately passed to
specified cells after having undergone a drip or mate operation. In both
variants, computational completeness can be obtained, yet with different
constraints for the drip and mate operations
Topological defects in spinor condensates
We investigate the structure of topological defects in the ground states of
spinor Bose-Einstein condensates with spin F=1 or F=2. The type and number of
defects are determined by calculating the first and second homotopy groups of
the order-parameter space. The order-parameter space is identified with a set
of degenerate ground state spinors. Because the structure of the ground state
depends on whether or not there is an external magnetic field applied to the
system, defects are sensitive to the magnetic field. We study both cases and
find that the defects in zero and non-zero field are different.Comment: 10 pages, 1 figure. Published versio
Elastic constants of beta-eucryptite: A density functional theory study
The five independent elastic constants of hexagonal -eucryptite have
been determined using density functional theory (DFT) total energy
calculations. The calculated values agree well, to within 15%, with the
experimental data. Using the calculated elastic constants, the linear
compressibility of -eucryptite parallel to the c-axis, , and
perpendicular to it, , have been evaluated. These values are in close
agreement to those obtained from experimentally known elastic constants, but
are in contradiction to the direct measurements based on a three-terminal
technique. The calculated compressibility parallel to the c-axis was found to
positive as opposed to the negative value obtained by direct measurements. We
have demonstrated that must be positive and discussed the implications
of a positive in the context of explaining the negative bulk thermal
expansion of -eucryptite.Comment: 3 eps figures, submitted for publicatio
Multiscale Bone Remodelling with Spatial P Systems
Many biological phenomena are inherently multiscale, i.e. they are
characterized by interactions involving different spatial and temporal scales
simultaneously. Though several approaches have been proposed to provide
"multilayer" models, only Complex Automata, derived from Cellular Automata,
naturally embed spatial information and realize multiscaling with
well-established inter-scale integration schemas. Spatial P systems, a variant
of P systems in which a more geometric concept of space has been added, have
several characteristics in common with Cellular Automata. We propose such a
formalism as a basis to rephrase the Complex Automata multiscaling approach
and, in this perspective, provide a 2-scale Spatial P system describing bone
remodelling. The proposed model not only results to be highly faithful and
expressive in a multiscale scenario, but also highlights the need of a deep and
formal expressiveness study involving Complex Automata, Spatial P systems and
other promising multiscale approaches, such as our shape-based one already
resulted to be highly faithful.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005
Prototype tests for the ALICE TRD
A Transition Radiation Detector (TRD) has been designed to improve the
electron identification and trigger capability of the ALICE experiment at the
Large Hadron Collider (LHC) at CERN. We present results from tests of a
prototype of the TRD concerning pion rejection for different methods of
analysis over a momentum range from 0.7 to 2 GeV/c. We investigate the
performance of different radiator types, composed of foils, fibres and foams.Comment: Presented at the IEEE Nuclear Science Symposium and Medical Imaging
Conference, Lyon, October 15-20, 2000 (accepted for publication in IEEE TNS),
Latex (IEEEtran.cls), 7 pages, 11 eps figure
Matter-Wave Solitons in an F=1 Spinor Bose-Einstein Condensate
Following our previous work [J. Ieda, T. Miyakawa, M. Wadati,
cond-mat/0404569] on a novel integrable model describing soliton dynamics of an
F=1 spinor Bose--Einstein condensate, we discuss in detail the properties of
the multi-component system with spin-exchange interactions. The exact multiple
bright soliton solutions are obtained for the system where the mean-field
interaction is attractive (c_0 < 0) and the spin-exchange interaction is
ferromagnetic (c_2 < 0). A complete classification of the one-soliton solution
with respect to the spin states and an explicit formula of the two-soliton
solution are presented. For solitons in polar state, there exists a variety of
different shaped solutions including twin peaks. We show that a "singlet pair"
density can be used to distinguish those energetically degenerate solitons. We
also analyze collisional effects between solitons in the same or different spin
state(s) by computing the asymptotic forms of their initial and final states.
The result reveals that it is possible to manipulate the spin dynamics by
controlling the parameters of colliding solitons.Comment: 12 pages, 9 figures, to appear in J. Phys. Soc. Jpn. Vol.73 No.11
(2004
Position Reconstruction in Drift Chambers operated with Xe, CO2 (15%)
We present measurements of position and angular resolution of drift chambers
operated with a Xe,CO(15%) mixture. The results are compared to Monte Carlo
simulations and important systematic effects, in particular the dispersive
nature of the absorption of transition radiation and non-linearities, are
discussed. The measurements were carried out with prototype drift chambers of
the ALICE Transition Radiation Detector, but our findings can be generalized to
other drift chambers with similar geometry, where the electron drift is
perpendicular to the wire planes.Comment: 30 pages, 18 figure
- …
