46 research outputs found
EPAS1 gene variants are associated with sprint/power athletic performance in two cohorts of European athletes
BACKGROUND: The endothelial PAS domain protein 1 (EPAS1) activates genes that are involved in erythropoiesis and angiogenesis, thus favoring a better delivery of oxygen to the tissues and is a plausible candidate to influence athletic performance. Using innovative statistical methods we compared genotype distributions and interactions of EPAS1 SNPs rs1867785, rs11689011, rs895436, rs4035887 and rs1867782 between sprint/power athletes (n = 338), endurance athletes (n = 254), and controls (603) in Polish and Russian samples. We also examined the association between these SNPs and the athletes’ competition level (‘elite’ and ‘sub-elite’ level). Genotyping was performed by either Real-Time PCR or by Single-Base Extension (SBE) method. RESULTS: In the pooled cohort of Polish and Russian athletes, 1) rs1867785 was associated with sprint/power athletic status; the AA genotype in rs1867785 was underrepresented in the sprint/power athletes, 2) rs11689011 was also associated with sprint/power athletic status; the TT genotype in rs11689011 was underrepresented sprint/power athletes, and 3) the interaction between rs1867785, rs11689011, and rs4035887 was associated with sprint/power athletic performance; the combinations of the AA genotype in rs4035887 with either the AG or GG genotypes in rs1867785, or with the CT or CC genotypes in rs11689011, were underrepresented in two cohorts of sprint/power athletes. CONCLUSIONS: Based on the unique statistical model rs1867785/rs11689011 are strong predictors of sprint/power athletic status, and the interaction between rs1867785, rs11689011, and rs4035887 might contribute to success in sprint/power athletic performance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-382) contains supplementary material, which is available to authorized users
The Pro12Ala Polymorphism of the Peroxisome Proliferator-Activated Receptor Gamma Gene Modifies the Association of Physical Activity and Body Mass Changes in Polish Women
Peroxisome proliferator-activated receptor γ is a key regulator of adipogenesis, responsible for fatty acid storage and maintaining energy balance in the human body. Studies on the functional importance of the PPARG Pro12Ala polymorphic variants indicated that the observed alleles may influence body mass measurements; however, obtained results were inconsistent. We have decided to check if body mass changes observed in physically active participants will be modulated by the PPARG Pro12Ala genotype. The genotype distribution of the PPARG Pro12Ala allele was examined in a group of 201 Polish women measured for selected body mass variables before and after the completion of a 12-week training program. The results of our experiment suggest that PPARG genotype can modulate training-induced body mass measurements changes: after completion of the training program, Pro12/Pro12 homozygotes were characterised by a greater decrease of body fat mass measurements in comparison with 12Ala allele carriers. These results indicate that the PPARG 12Ala variant may impair the training-induced positive effects on body mass measurements; however, the detailed mechanism of such interaction remained unclear and observed correlation between PPARG genotype and body mass differential effects should be interpreted with caution
The ACTN3 R577X Polymorphism across Three Groups of Elite Male European Athletes
The ACTN3 R577X polymorphism (rs1815739) is a strong candidate to influence elite athletic performance. Yet, controversy exists in the literature owing to between-studies differences in the ethnic background and sample size of the cohorts, the latter being usually low, which makes comparisons difficult. In this case:control genetic study we determined the association between elite athletic status and the ACTN3 R577X polymorphism within three cohorts of European Caucasian men, i.e. Spanish, Polish and Russian [633 cases (278 elite endurance and 355 power athletes), and 808 non-athletic controls]. The odds ratio (OR) of a power athlete harbouring the XX versus the RR genotype compared with sedentary controls was 0.54 [95% confidence interval (CI): 0.34–0.48; P = 0.006]. We also observed that the OR of an endurance athlete having the XX versus the RR genotype compared with power athletes was 1.88 (95%CI: 1.07–3.31; P = 0.028). In endurance athletes, the OR of a “world-class” competitor having the XX genotype versus the RR+RX genotype was 3.74 (95%CI: 1.08–12.94; P = 0.038) compared with those of a lower (“national”) competition level. No association (P>0.1) was noted between the ACTN3 R577X polymorphism and competition level (world-class versus national-level) in power athletes. Our data provide comprehensive support for the influence of the ACTN3 R577X polymorphism on elite athletic performance
No Evidence of a Common DNA Variant Profile Specific to World Class Endurance Athletes
There are strong genetic components to cardiorespiratory fitness and its
response to exercise training. It would be useful to understand the
differences in the genomic profile of highly trained endurance athletes of
world class caliber and sedentary controls. An international consortium
(GAMES) was established in order to compare elite endurance athletes and
ethnicity-matched controls in a case-control study design. Genome-wide
association studies were undertaken on two cohorts of elite endurance athletes
and controls (GENATHLETE and Japanese endurance runners), from which a panel
of 45 promising markers was identified. These markers were tested for
replication in seven additional cohorts of endurance athletes and controls:
from Australia, Ethiopia, Japan, Kenya, Poland, Russia and Spain. The study is
based on a total of 1520 endurance athletes (835 who took part in endurance
events in World Championships and/or Olympic Games) and 2760 controls. We
hypothesized that world-class athletes are likely to be characterized by an
even higher concentration of endurance performance alleles and we performed
separate analyses on this subsample. The meta-analysis of all available
studies revealed one statistically significant marker (rs558129 at GALNTL6
locus, p = 0.0002), even after correcting for multiple testing. As shown by
the low heterogeneity index (I2 = 0), all eight cohorts showed the same
direction of association with rs558129, even though p-values varied across the
individual studies. In summary, this study did not identify a panel of genomic
variants common to these elite endurance athlete groups. Since GAMES was
underpowered to identify alleles with small effect sizes, some of the
suggestive leads identified should be explored in expanded comparisons of
world-class endurance athletes and sedentary controls and in tightly
controlled exercise training studies. Such studies have the potential to
illuminate the biology not only of world class endurance performance but also
of compromised cardiac functions and cardiometabolic diseases
Association between the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma gene and strength athlete status.
BACKGROUND: The 12Ala allele of the Peroxisome Proliferator-Activated Receptor gamma gene (PPARG) Pro12Ala polymorphism produces a decreased binding affinity of the PPARγ2 protein, resulting in low activation of the target genes. The 12Ala allele carriers display a significantly improved insulin sensitivity that may result in better glucose utilisation in working skeletal muscles. We hypothesise that the PPARG 12Ala allele could be associated with strength athlete status in Polish athletes. METHODOLOGY: The genotype distribution of PPARG Pro12Ala was examined in 660 Polish athletes. The athletes were stratified into four subgroups: endurance, strength-endurance, sprint-strength and strength. Control samples were prepared from 684 unrelated sedentary volunteers. A χ(2) test was used to compare the PPARG Pro12Ala allele and genotype frequencies between the different groups of athletes and control subjects. Bonferroni's correction for multiple testing was applied. RESULTS: A statistically significant higher frequency of PPARG 12Ala alleles was observed in the subgroup of strength athletes performing short-term and very intense exertion characterised by predominant anaerobic energy production (13.2% vs. 7.5% in controls; P = 0.0007). CONCLUSION: The PPARG 12Ala allele may be a relevant genetic factor favouring strength abilities in professional athletes, especially in terms of insulin-dependent metabolism, a shift of the energy balance towards glucose utilisation and the development of a favourable weight-to-strength ratio
Gastric lipomatosis
Gastric lipomatosis is a condition characterized by the presence of multiple lipomas or diffuse mature adipose tissue infiltration within the gastric wall. The diffuse form is thought to be an extremely rare, with only few described cases. The lesion may be asymptomatic or associated with symptoms and signs depending on location and size. Treatment depends on clinical presentation, range and complications. In a symptomatic disease, it should be surgical, but conservative treatment is preferred for asymptomatic and solitary lesions. Among diagnostic methods, computed tomography and magnetic resonance imaging are thought to be the most valuable