268 research outputs found
Nature of metal-nonmetal transition in metal-ammonia solutions. II. From uniform metallic state to inhomogeneous electronic microstructure
Applying semi-analytical models of nonideal plasma, we evaluate the behavior
of the metallic phase in metal-ammonia solutions (MAS). This behavior is mainly
controlled by the degenerate electron gas, which remains stable down to 5 MPM
due to high solvent polarizability and strong dielectric screening of solvated
ions. Comparing the behavior of the metallic state with those of localized
solvated electrons, we have estimated the miscibility gap for
various alkali metals and found (Na)K. It is rather
narrow in Rb-NH and does not occur in Cs-NH solutions, which is in full
agreement with the experiments. The case of Li is discussed separately. The
difference calculated in the excess free energies of the metallic and
nonmetallic phases is in the order of , yielding a thermally fluctuating
mixed state at intermediate metal concentrations. It results in a continuous
metal-nonmetal (MNM) transition above the consolute point and a phase
separation below . We propose a criterion for the MNM transition which may
be attributed to the line of the maximum of compressibility above . This
line crosses the spinodal one at the critical temperature. Finally, we assert
that a new electronic phase similar to microemulsion should also arise between
the spinodal and the binodal lines.Comment: 22 pages, 10 figure
Nature of the metal-nonmetal transition in metal-ammonia solutions. I. Solvated electrons at low metal concentrations
Using a theory of polarizable fluids, we extend a variational treatment of an
excess electron to the many-electron case corresponding to finite metal
concentrations in metal-ammonia solutions (MAS). We evaluate dielectric,
optical, and thermodynamical properties of MAS at low metal concentrations. Our
semi-analytical calculations based on a mean-spherical approximation correlate
well with the experimental data on the concentration and the temperature
dependencies of the dielectric constant and the optical absorption spectrum.
The properties are found to be mainly determined by the induced dipolar
interactions between localized solvated electrons, which result in the two main
effects: the dispersion attractions between the electrons and a sharp increase
in the static dielectric constant of the solution. The first effect provides a
classical phase separation for the light alkali metal solutes (Li, Na, K) below
a critical temperature. The second effect leads to a dielectric instability,
i.e., polarization catastrophe, which is the onset of metallization. The locus
of the calculated critical concentrations is in a good agreement with the
experimental phase diagram of Na-NH3 solutions. The proposed mechanism of the
metal-nonmetal transition is quite general and may occur in systems involving
self-trapped quantum quasiparticles.Comment: 13 figures, 42 page
The local phase transitions of the solvent in the neighborhood of a solvophobic polymer at high pressures
We investigate local phase transitions of the solvent in the neighborhood of
a solvophobic polymer chain which is induced by a change of the polymer-solvent
repulsion and the solvent pressure in the bulk solution. We describe the
polymer in solution by the Edwards model, where the conditional partition
function of the polymer chain at a fixed radius of gyration is described by a
mean-field theory. The contributions of the polymer-solvent and the
solvent-solvent interactions to the total free energy are described within the
mean-field approximation. We obtain the total free energy of the solution as a
function of the radius of gyration and the average solvent number density
within the gyration volume. The resulting system of coupled equations is solved
varying the polymer-solvent repulsion strength at high solvent pressure in the
bulk. We show that the coil-globule (globule-coil) transition occurs
accompanied by a local solvent evaporation (condensation) within the gyration
volum
Structural and transport properties of GaAs/delta<Mn>/GaAs/InxGa1-xAs/GaAs quantum wells
We report results of investigations of structural and transport properties of
GaAs/Ga(1-x)In(x)As/GaAs quantum wells (QWs) having a 0.5-1.8 ML thick Mn
layer, separated from the QW by a 3 nm thick spacer. The structure has hole
mobility of about 2000 cm2/(V*s) being by several orders of magnitude higher
than in known ferromagnetic two-dimensional structures. The analysis of the
electro-physical properties of these systems is based on detailed study of
their structure by means of high-resolution X-ray diffractometry and
glancing-incidence reflection, which allow us to restore the depth profiles of
structural characteristics of the QWs and thin Mn containing layers. These
investigations show absence of Mn atoms inside the QWs. The quality of the
structures was also characterized by photoluminescence spectra from the QWs.
Transport properties reveal features inherent to ferromagnetic systems: a
specific maximum in the temperature dependence of the resistance and the
anomalous Hall effect (AHE) observed in samples with both "metallic" and
activated types of conductivity up to ~100 K. AHE is most pronounced in the
temperature range where the resistance maximum is observed, and decreases with
decreasing temperature. The results are discussed in terms of interaction of
2D-holes and magnetic Mn ions in presence of large-scale potential fluctuations
related to random distribution of Mn atoms. The AHE values are compared with
calculations taking into account its "intrinsic" mechanism in ferromagnetic
systems.Comment: 15 pages, 9 figure
Herzfeld instability versus Mott transition in metal-ammonia solutions
Although most metal-insulator transitions in doped insulators are generally
viewed as Mott transitions, some systems seem to deviate from this scenario.
Alkali metal-ammonia solutions are a brilliant example of that. They reveal a
phase separation in the range of metal concentrations where a metal-insulator
transition occurs. Using a mean spherical approximation for quantum polarizable
fluids, we argue that the origin of the metal-insulator transition in such a
system is likely similar to that proposed by Herzfeld a long time ago, namely,
due to fluctuations of solvated electrons. We also show how the phase
separation may appear: the Herzfeld instability of the insulator occurs at a
concentration for which the metallic phase is also unstable. As a consequence,
the Mott transition cannot occur at low temperatures. The proposed scenario may
provide a new insight into the metal-insulator transition in condensed-matter
physics.Comment: 9 pages, 4 figure
Combined EUV reflectance and X-ray reflectivity data analysis of periodic multilayer structures
We present a way to analyze the chemical composition of periodical multilayer structures using the simultaneous analysis of grazing incidence hard X-Ray reflectivity (GIXR) and normal incidence extreme ultraviolet reflectance (EUVR). This allows to combine the high sensitivity of GIXR data to layer and interface thicknesses with the sensitivity of EUVR to the layer densities and atomic compositions. This method was applied to the reconstruction of the layered structure of a LaN/B multilayer mirror with 3.5 nm periodicity. We have compared profiles obtained by simultaneous EUVR and GIXR and GIXR-only data analysis, both reconstructed profiles result in a similar description of the layered structure. However, the simultaneous analysis of both EUVR and GIXR by a single algorithm lead to a ∼2x increased accuracy of the reconstructed layered model, or a more narrow range of solutions, as compared to the GIXR analysis only. It also explains the inherent difficulty of accurately predicting EUV reflectivity from a GIXR-only analysis
Pecularities of Hall effect in GaAs/{\delta}<Mn>/GaAs/In\timesGa1-\timesAs/GaAs (\times {\approx} 0.2) heterostructures with high Mn content
Transport properties of GaAs/{\delta}/GaAs/In\timesGa1-\timesAs/GaAs
structures containing InxGa1-xAs (\times {\approx} 0.2) quantum well (QW) and
Mn delta layer (DL) with relatively high, about one Mn monolayer (ML) content,
are studied. In these structures DL is separated from QW by GaAs spacer with
the thickness ds = 2-5 nm. All structures possess a dielectric character of
conductivity and demonstrate a maximum in the resistance temperature dependence
Rxx(T) at the temperature {\approx} 46K which is usually associated with the
Curie temperature Tc of ferromagnetic (FM) transition in DL. However, it is
found that the Hall effect concentration of holes pH in QW does not decrease
below TC as one ordinary expects in similar systems. On the contrary, the
dependence pH(T) experiences a minimum at T = 80-100 K depending on the spacer
thickness, then increases at low temperatures more strongly than ds is smaller
and reaches a giant value pH = (1-2)\cdot10^13 cm^(-2). Obtained results are
interpreted in the terms of magnetic proximity effect of DL on QW, leading to
induce spin polarization of the holes in QW. Strong structural and magnetic
disorder in DL and QW, leading to the phase segregation in them is taken into
consideration. The high pH value is explained as a result of compensation of
the positive sign normal Hall effect component by the negative sign anomalous
Hall effect component.Comment: 19 pages, 6 figure
- …