1,581 research outputs found
Recommended from our members
Evolution of superconductivity in K2-xFe4+ySe5: Spectroscopic studies of X-ray absorption and emission.
This study investigates the evolution of superconductivity in K2-xFe4+ySe5 using temperature-dependent X-ray absorption and resonant inelastic X-ray scattering techniques. Magnetization measurements show that polycrystalline superconducting (SC) K1.9Fe4.2Se5 has a critical temperature (T c) of ∼31 K with a varying superconducting volume fraction, which strongly depends on its synthesis temperature. An increase in Fe-structural/vacancy disorder in SC samples with more Fe atoms occupying vacant 4d sites is found to be closely related to the decrease in the spin magnetic moment of Fe. Moreover, the nearest-neighbor Fe-Se bond length in SC samples exceeds that in the non-SC (NS) sample, K2Fe4Se5, which indicates a weaker hybridization between the Fe 3d and Se 4p states in SC samples. These results clearly demonstrate the correlations among the local electronic and atomic structures and the magnetic properties of K2-xFe4+ySe5 superconductors, providing deeper insight into the electron pairing mechanisms of superconductivity
Efficient simulation of the spatial transmission dynamics of influenza
Early data from the 2009 H1N1 pandemic (H1N1pdm) suggest that previous studies over-estimated the within-country rate of spatial spread of pandemic influenza. As large spatially resolved data sets are constructed, the need for efficient simulation code with which to investigate the spatial patterns of the pandemic becomes clear. Here, we present a significant improvement to the efficiency of an individual based stochastic disease simulation framework commonly used in multiple previous studies. We quantify the efficiency of the revised algorithm and present an alternative parameterization of the model in terms of the basic reproductive number. We apply the model to the population of Taiwan and demonstrate how the location of the initial seed can influence spatial incidence profiles and the overall spread of the epidemic. Differences in incidence are driven by the relative connectivity of alternate seed locations. The ability to perform efficient simulation allows us to run a batch of simulations and take account of their average in real time. The averaged data are stable and can be used to differentiate spreading patterns that are not readily seen by only conducting a few runs. © 2010 Tsai et al.published_or_final_versio
In vivo activity of the dual SYK/FLT3 inhibitor TAK-659 against pediatric acute lymphoblastic leukemia xenografts
Background: While children with acute lymphoblastic leukemia (ALL) experience close to a 90% likelihood of cure, the outcome for certain high-risk pediatric ALL subtypes remains dismal. Spleen tyrosine kinase (SYK) is a prominent cytosolic nonreceptor tyrosine kinase in pediatric B-lineage ALL (B-ALL). Activating mutations or overexpression of Fms-related receptor tyrosine kinase 3 (FLT3) are associated with poor outcome in hematological malignancies. TAK-659 (mivavotinib) is a dual SYK/FLT3 reversible inhibitor, which has been clinically evaluated in several other hematological malignancies. Here, we investigate the in vivo efficacy of TAK-659 against pediatric ALL patient-derived xenografts (PDXs). Methods: SYK and FLT3 mRNA expression was quantified by RNA-seq. PDX engraftment and drug responses in NSG mice were evaluated by enumerating the proportion of human CD45+ cells (%huCD45+) in the peripheral blood. TAK-659 was administered per oral at 60 mg/kg daily for 21 days. Events were defined as %huCD45+ ≥ 25%. In addition, mice were humanely killed to assess leukemia infiltration in the spleen and bone marrow (BM). Drug efficacy was assessed by event-free survival and stringent objective response measures. Results: FLT3 and SYK mRNA expression was significantly higher in B-lineage compared with T-lineage PDXs. TAK-659 was well tolerated and significantly prolonged the time to event in six out of eight PDXs tested. However, only one PDX achieved an objective response. The minimum mean %huCD45+ was significantly reduced in five out of eight PDXs in TAK-659-treated mice compared with vehicle controls. Conclusions: TAK-659 exhibited low to moderate single-agent in vivo activity against pediatric ALL PDXs representative of diverse subtypes
Effects of anisotropic interactions on the structure of animal groups
This paper proposes an agent-based model which reproduces different
structures of animal groups. The shape and structure of the group is the effect
of simple interaction rules among individuals: each animal deploys itself
depending on the position of a limited number of close group mates. The
proposed model is shown to produce clustered formations, as well as lines and
V-like formations. The key factors which trigger the onset of different
patterns are argued to be the relative strength of attraction and repulsion
forces and, most important, the anisotropy in their application.Comment: 22 pages, 9 figures. Submitted. v1-v4: revised presentation; extended
simulations; included technical results. v5: added a few clarification
Acute Pancreatitis Secondary to Duodenoduodenal Intussusception in Duodenal Adenoma
Duodenoduodenal intussusception is a rare condition that is in general caused by a tumor. We describe duodenoduodenal intussusception secondary to a tubulovillous adenoma that caused acute pancreatitis in a 31-year-old female. We resected a duodenal tumor from the submucosal layer and then simply closed the duodenal wall. To the best of our knowledge, this is the first description of acute pancreatitis secondary to duodenoduodenal intussusception by tubulovillous adenoma in the second part of the duodenum in an adult
BPS Spectrum, Indices and Wall Crossing in N=4 Supersymmetric Yang-Mills Theories
BPS states in N=4 supersymmetric SU(N) gauge theories in four dimensions can
be represented as planar string networks with ends lying on D3-branes. We
introduce several protected indices which capture information on the spectrum
and various quantum numbers of these states, give their wall crossing formula
and describe how using the wall crossing formula we can compute all the indices
at all points in the moduli space.Comment: LaTeX file, 33 pages, 15 figure
Worm Grunting, Fiddling, and Charming—Humans Unknowingly Mimic a Predator to Harvest Bait
Background: For generations many families in and around Florida’s Apalachicola National Forest have supported themselves by collecting the large endemic earthworms (Diplocardia mississippiensis). This is accomplished by vibrating a wooden stake driven into the soil, a practice called ‘‘worm grunting’’. In response to the vibrations, worms emerge to the surface where thousands can be gathered in a few hours. Why do these earthworms suddenly exit their burrows in response to vibrations, exposing themselves to predation? Principal Findings: Here it is shown that a population of eastern American moles (Scalopus aquaticus) inhabits the area where worms are collected and that earthworms have a pronounced escape response from moles consisting of rapidly exiting their burrows to flee across the soil surface. Recordings of vibrations generated by bait collectors and moles suggest that ‘‘worm grunters’ ’ unknowingly mimic digging moles. An alternative possibility, that worms interpret vibrations as rain and surface to avoid drowning is not supported. Conclusions: Previous investigations have revealed that both wood turtles and herring gulls vibrate the ground to elicit earthworm escapes, indicating that a range of predators may exploit the predator-prey relationship between earthworms and moles. In addition to revealing a novel escape response that may be widespread among soil fauna, the results sho
Blending using ODE swept surfaces with shape control and C1 continuity
Surface blending with tangential continuity is most widely applied in computer aided design, manufacturing systems, and geometric modeling. In this paper, we propose a new blending method to effectively control the shape of blending surfaces, which can also satisfy the blending constraints of tangent continuity exactly. This new blending method is based on the concept of swept surfaces controlled by a vector-valued fourth order ordinary differential equation (ODE). It creates blending surfaces by sweeping a generator along two trimlines and making the generator exactly satisfy the tangential constraints at the trimlines. The shape of blending surfaces is controlled by manipulating the generator with the solution to a vector-valued fourth order ODE. This new blending methods have the following advantages: 1). exact satisfaction of 1C continuous blending boundary constraints, 2). effective shape control of blending surfaces, 3). high computing efficiency due to explicit mathematical representation of blending surfaces, and 4). ability to blend multiple (more than two) primary surfaces
White Electroluminescence Using ZnO Nanotubes/GaN Heterostructure Light-Emitting Diode
We report the fabrication of heterostructure white light–emitting diode (LED) comprised of n-ZnO nanotubes (NTs) aqueous chemically synthesized on p-GaN substrate. Room temperature electroluminescence (EL) of the LED demonstrates strong broadband white emission spectrum consisting of predominating peak centred at 560 nm and relatively weak violet–blue emission peak at 450 nm under forward bias. The broadband EL emission covering the whole visible spectrum has been attributed to the large surface area and high surface states of ZnO NTs produced during the etching process. In addition, comparison of the EL emission colour quality shows that ZnO nanotubes have much better quality than that of the ZnO nanorods. The colour-rendering index of the white light obtained from the nanotubes was 87, while the nanorods-based LED emit yellowish colour
- …