3,574 research outputs found

    Smoothness for Simultaneous Composition of Mechanisms with Admission

    Full text link
    We study social welfare of learning outcomes in mechanisms with admission. In our repeated game there are nn bidders and mm mechanisms, and in each round each mechanism is available for each bidder only with a certain probability. Our scenario is an elementary case of simple mechanism design with incomplete information, where availabilities are bidder types. It captures natural applications in online markets with limited supply and can be used to model access of unreliable channels in wireless networks. If mechanisms satisfy a smoothness guarantee, existing results show that learning outcomes recover a significant fraction of the optimal social welfare. These approaches, however, have serious drawbacks in terms of plausibility and computational complexity. Also, the guarantees apply only when availabilities are stochastically independent among bidders. In contrast, we propose an alternative approach where each bidder uses a single no-regret learning algorithm and applies it in all rounds. This results in what we call availability-oblivious coarse correlated equilibria. It exponentially decreases the learning burden, simplifies implementation (e.g., as a method for channel access in wireless devices), and thereby addresses some of the concerns about Bayes-Nash equilibria and learning outcomes in Bayesian settings. Our main results are general composition theorems for smooth mechanisms when valuation functions of bidders are lattice-submodular. They rely on an interesting connection to the notion of correlation gap of submodular functions over product lattices.Comment: Full version of WINE 2016 pape

    The formation of black holes in spherically symmetric gravitational collapse

    Full text link
    We consider the spherically symmetric, asymptotically flat Einstein-Vlasov system. We find explicit conditions on the initial data, with ADM mass M, such that the resulting spacetime has the following properties: there is a family of radially outgoing null geodesics where the area radius r along each geodesic is bounded by 2M, the timelike lines r=c[0,2M]r=c\in [0,2M] are incomplete, and for r>2M the metric converges asymptotically to the Schwarzschild metric with mass M. The initial data that we construct guarantee the formation of a black hole in the evolution. We also give examples of such initial data with the additional property that the solutions exist for all r0r\geq 0 and all Schwarzschild time, i.e., we obtain global existence in Schwarzschild coordinates in situations where the initial data are not small. Some of our results are also established for the Einstein equations coupled to a general matter model characterized by conditions on the matter quantities.Comment: 36 pages. A corollary on global existence in Schwarzschild coordinates for data which are not small is added together with minor modification

    A Striking Confluence Between Theory and Observations of High-Mass X-ray Binary Pulsars

    Full text link
    We analyse the most powerful X-ray outbursts from neutron stars in ten Magellanic high-mass X-ray binaries and three pulsating ultraluminous X-ray sources. Most of the outbursts rise to LmaxL_{max} which is about the level of the Eddington luminosity, while the rest and more powerful outbursts also appear to recognize that limit when their emissions are assumed to be anisotropic and beamed toward our direction. We use the measurements of pulsar spin periods PSP_S and their derivatives PS˙\dot{P_S} to calculate the X-ray luminosities LpL_p in their faintest accreting ("propeller") states. In four cases with unknown PS˙\dot{P_S}, we use the lowest observed X-ray luminosities, which only adds to the heterogeneity of the sample. Then we calculate the ratios Lp/LmaxL_p/L_{max} and we obtain an outstanding confluence of theory and observations from which we conclude that work done on both fronts is accurate and the results are trustworthy: sources known to reside on the lowest Magellanic propeller line are all located on/near that line, whereas other sources jump higher and reach higher-lying propeller lines. These jumps can be interpreted in only one way, higher-lying pulsars have stronger surface magnetic fields in agreement with empirical results in which PS˙\dot{P_S} and LpL_p values were not used.Comment: Added LMC X-4 and commented on the cyclotron absorption line of SMC X-2. 4 pages, 1 figure, 2 tables, submitted to MNRAS

    On static shells and the Buchdahl inequality for the spherically symmetric Einstein-Vlasov system

    Full text link
    In a previous work \cite{An1} matter models such that the energy density ρ0,\rho\geq 0, and the radial- and tangential pressures p0p\geq 0 and q,q, satisfy p+qΩρ,Ω1,p+q\leq\Omega\rho, \Omega\geq 1, were considered in the context of Buchdahl's inequality. It was proved that static shell solutions of the spherically symmetric Einstein equations obey a Buchdahl type inequality whenever the support of the shell, [R0,R1],R0>0,[R_0,R_1], R_0>0, satisfies R1/R0<1/4.R_1/R_0<1/4. Moreover, given a sequence of solutions such that R1/R01,R_1/R_0\to 1, then the limit supremum of 2M/R12M/R_1 was shown to be bounded by ((2Ω+1)21)/(2Ω+1)2.((2\Omega+1)^2-1)/(2\Omega+1)^2. In this paper we show that the hypothesis that R1/R01,R_1/R_0\to 1, can be realized for Vlasov matter, by constructing a sequence of static shells of the spherically symmetric Einstein-Vlasov system with this property. We also prove that for this sequence not only the limit supremum of 2M/R12M/R_1 is bounded, but that the limit is ((2Ω+1)21)/(2Ω+1)2=8/9,((2\Omega+1)^2-1)/(2\Omega+1)^2=8/9, since Ω=1\Omega=1 for Vlasov matter. Thus, static shells of Vlasov matter can have 2M/R12M/R_1 arbitrary close to 8/9,8/9, which is interesting in view of \cite{AR2}, where numerical evidence is presented that 8/9 is an upper bound of 2M/R12M/R_1 of any static solution of the spherically symmetric Einstein-Vlasov system.Comment: 20 pages, Late

    Self-gravitating Klein-Gordon fields in asymptotically Anti-de-Sitter spacetimes

    Full text link
    We initiate the study of the spherically symmetric Einstein-Klein-Gordon system in the presence of a negative cosmological constant, a model appearing frequently in the context of high-energy physics. Due to the lack of global hyperbolicity of the solutions, the natural formulation of dynamics is that of an initial boundary value problem, with boundary conditions imposed at null infinity. We prove a local well-posedness statement for this system, with the time of existence of the solutions depending only on an invariant H^2-type norm measuring the size of the Klein-Gordon field on the initial data. The proof requires the introduction of a renormalized system of equations and relies crucially on r-weighted estimates for the wave equation on asymptotically AdS spacetimes. The results provide the basis for our companion paper establishing the global asymptotic stability of Schwarzschild-Anti-de-Sitter within this system.Comment: 50 pages, v2: minor changes, to appear in Annales Henri Poincar\'

    Improving the Price of Anarchy for Selfish Routing via Coordination Mechanisms

    Get PDF
    We reconsider the well-studied Selfish Routing game with affine latency functions. The Price of Anarchy for this class of games takes maximum value 4/3; this maximum is attained already for a simple network of two parallel links, known as Pigou's network. We improve upon the value 4/3 by means of Coordination Mechanisms. We increase the latency functions of the edges in the network, i.e., if e(x)\ell_e(x) is the latency function of an edge ee, we replace it by ^e(x)\hat{\ell}_e(x) with e(x)^e(x)\ell_e(x) \le \hat{\ell}_e(x) for all xx. Then an adversary fixes a demand rate as input. The engineered Price of Anarchy of the mechanism is defined as the worst-case ratio of the Nash social cost in the modified network over the optimal social cost in the original network. Formally, if \CM(r) denotes the cost of the worst Nash flow in the modified network for rate rr and \Copt(r) denotes the cost of the optimal flow in the original network for the same rate then [\ePoA = \max_{r \ge 0} \frac{\CM(r)}{\Copt(r)}.] We first exhibit a simple coordination mechanism that achieves for any network of parallel links an engineered Price of Anarchy strictly less than 4/3. For the case of two parallel links our basic mechanism gives 5/4 = 1.25. Then, for the case of two parallel links, we describe an optimal mechanism; its engineered Price of Anarchy lies between 1.191 and 1.192.Comment: 17 pages, 2 figures, preliminary version appeared at ESA 201

    Analysis of magnetic field levels at KSC

    Get PDF
    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed

    Coarse Brownian Dynamics for Nematic Liquid Crystals: Bifurcation Diagrams via Stochastic Simulation

    Full text link
    We demonstrate how time-integration of stochastic differential equations (i.e. Brownian dynamics simulations) can be combined with continuum numerical bifurcation analysis techniques to analyze the dynamics of liquid crystalline polymers (LCPs). Sidestepping the necessity of obtaining explicit closures, the approach analyzes the (unavailable in closed form) coarse macroscopic equations, estimating the necessary quantities through appropriately initialized, short bursts of Brownian dynamics simulation. Through this approach, both stable and unstable branches of the equilibrium bifurcation diagram are obtained for the Doi model of LCPs and their coarse stability is estimated. Additional macroscopic computational tasks enabled through this approach, such as coarse projective integration and coarse stabilizing controller design, are also demonstrated
    corecore