3,574 research outputs found
Smoothness for Simultaneous Composition of Mechanisms with Admission
We study social welfare of learning outcomes in mechanisms with admission. In
our repeated game there are bidders and mechanisms, and in each round
each mechanism is available for each bidder only with a certain probability.
Our scenario is an elementary case of simple mechanism design with incomplete
information, where availabilities are bidder types. It captures natural
applications in online markets with limited supply and can be used to model
access of unreliable channels in wireless networks.
If mechanisms satisfy a smoothness guarantee, existing results show that
learning outcomes recover a significant fraction of the optimal social welfare.
These approaches, however, have serious drawbacks in terms of plausibility and
computational complexity. Also, the guarantees apply only when availabilities
are stochastically independent among bidders.
In contrast, we propose an alternative approach where each bidder uses a
single no-regret learning algorithm and applies it in all rounds. This results
in what we call availability-oblivious coarse correlated equilibria. It
exponentially decreases the learning burden, simplifies implementation (e.g.,
as a method for channel access in wireless devices), and thereby addresses some
of the concerns about Bayes-Nash equilibria and learning outcomes in Bayesian
settings. Our main results are general composition theorems for smooth
mechanisms when valuation functions of bidders are lattice-submodular. They
rely on an interesting connection to the notion of correlation gap of
submodular functions over product lattices.Comment: Full version of WINE 2016 pape
The formation of black holes in spherically symmetric gravitational collapse
We consider the spherically symmetric, asymptotically flat Einstein-Vlasov
system. We find explicit conditions on the initial data, with ADM mass M, such
that the resulting spacetime has the following properties: there is a family of
radially outgoing null geodesics where the area radius r along each geodesic is
bounded by 2M, the timelike lines are incomplete, and for r>2M
the metric converges asymptotically to the Schwarzschild metric with mass M.
The initial data that we construct guarantee the formation of a black hole in
the evolution. We also give examples of such initial data with the additional
property that the solutions exist for all and all Schwarzschild time,
i.e., we obtain global existence in Schwarzschild coordinates in situations
where the initial data are not small. Some of our results are also established
for the Einstein equations coupled to a general matter model characterized by
conditions on the matter quantities.Comment: 36 pages. A corollary on global existence in Schwarzschild
coordinates for data which are not small is added together with minor
modification
A Striking Confluence Between Theory and Observations of High-Mass X-ray Binary Pulsars
We analyse the most powerful X-ray outbursts from neutron stars in ten
Magellanic high-mass X-ray binaries and three pulsating ultraluminous X-ray
sources. Most of the outbursts rise to which is about the level of
the Eddington luminosity, while the rest and more powerful outbursts also
appear to recognize that limit when their emissions are assumed to be
anisotropic and beamed toward our direction. We use the measurements of pulsar
spin periods and their derivatives to calculate the X-ray
luminosities in their faintest accreting ("propeller") states. In four
cases with unknown , we use the lowest observed X-ray luminosities,
which only adds to the heterogeneity of the sample. Then we calculate the
ratios and we obtain an outstanding confluence of theory and
observations from which we conclude that work done on both fronts is accurate
and the results are trustworthy: sources known to reside on the lowest
Magellanic propeller line are all located on/near that line, whereas other
sources jump higher and reach higher-lying propeller lines. These jumps can be
interpreted in only one way, higher-lying pulsars have stronger surface
magnetic fields in agreement with empirical results in which and
values were not used.Comment: Added LMC X-4 and commented on the cyclotron absorption line of SMC
X-2. 4 pages, 1 figure, 2 tables, submitted to MNRAS
On static shells and the Buchdahl inequality for the spherically symmetric Einstein-Vlasov system
In a previous work \cite{An1} matter models such that the energy density
and the radial- and tangential pressures and
satisfy were considered in the context of
Buchdahl's inequality. It was proved that static shell solutions of the
spherically symmetric Einstein equations obey a Buchdahl type inequality
whenever the support of the shell, satisfies
Moreover, given a sequence of solutions such that then the
limit supremum of was shown to be bounded by
In this paper we show that the hypothesis
that can be realized for Vlasov matter, by constructing a
sequence of static shells of the spherically symmetric Einstein-Vlasov system
with this property. We also prove that for this sequence not only the limit
supremum of is bounded, but that the limit is
since for Vlasov matter.
Thus, static shells of Vlasov matter can have arbitrary close to
which is interesting in view of \cite{AR2}, where numerical evidence is
presented that 8/9 is an upper bound of of any static solution of the
spherically symmetric Einstein-Vlasov system.Comment: 20 pages, Late
Self-gravitating Klein-Gordon fields in asymptotically Anti-de-Sitter spacetimes
We initiate the study of the spherically symmetric Einstein-Klein-Gordon
system in the presence of a negative cosmological constant, a model appearing
frequently in the context of high-energy physics. Due to the lack of global
hyperbolicity of the solutions, the natural formulation of dynamics is that of
an initial boundary value problem, with boundary conditions imposed at null
infinity. We prove a local well-posedness statement for this system, with the
time of existence of the solutions depending only on an invariant H^2-type norm
measuring the size of the Klein-Gordon field on the initial data. The proof
requires the introduction of a renormalized system of equations and relies
crucially on r-weighted estimates for the wave equation on asymptotically AdS
spacetimes. The results provide the basis for our companion paper establishing
the global asymptotic stability of Schwarzschild-Anti-de-Sitter within this
system.Comment: 50 pages, v2: minor changes, to appear in Annales Henri Poincar\'
Improving the Price of Anarchy for Selfish Routing via Coordination Mechanisms
We reconsider the well-studied Selfish Routing game with affine latency
functions. The Price of Anarchy for this class of games takes maximum value
4/3; this maximum is attained already for a simple network of two parallel
links, known as Pigou's network. We improve upon the value 4/3 by means of
Coordination Mechanisms.
We increase the latency functions of the edges in the network, i.e., if
is the latency function of an edge , we replace it by
with for all . Then an
adversary fixes a demand rate as input. The engineered Price of Anarchy of the
mechanism is defined as the worst-case ratio of the Nash social cost in the
modified network over the optimal social cost in the original network.
Formally, if \CM(r) denotes the cost of the worst Nash flow in the modified
network for rate and \Copt(r) denotes the cost of the optimal flow in the
original network for the same rate then [\ePoA = \max_{r \ge 0}
\frac{\CM(r)}{\Copt(r)}.]
We first exhibit a simple coordination mechanism that achieves for any
network of parallel links an engineered Price of Anarchy strictly less than
4/3. For the case of two parallel links our basic mechanism gives 5/4 = 1.25.
Then, for the case of two parallel links, we describe an optimal mechanism; its
engineered Price of Anarchy lies between 1.191 and 1.192.Comment: 17 pages, 2 figures, preliminary version appeared at ESA 201
Analysis of magnetic field levels at KSC
The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed
Coarse Brownian Dynamics for Nematic Liquid Crystals: Bifurcation Diagrams via Stochastic Simulation
We demonstrate how time-integration of stochastic differential equations
(i.e. Brownian dynamics simulations) can be combined with continuum numerical
bifurcation analysis techniques to analyze the dynamics of liquid crystalline
polymers (LCPs). Sidestepping the necessity of obtaining explicit closures, the
approach analyzes the (unavailable in closed form) coarse macroscopic
equations, estimating the necessary quantities through appropriately
initialized, short bursts of Brownian dynamics simulation. Through this
approach, both stable and unstable branches of the equilibrium bifurcation
diagram are obtained for the Doi model of LCPs and their coarse stability is
estimated. Additional macroscopic computational tasks enabled through this
approach, such as coarse projective integration and coarse stabilizing
controller design, are also demonstrated
- …