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Abstract

We study the universal Traveling Salesman Problem in
an n × n grid with the shortest path metric. The goal
is to define a (universal) total ordering over the set
of grid’s vertices, in a way that for any input (subset
of vertices), the tour, which visits the points in this
ordering, is a good approximation of the optimal tour,
i.e. has low competitive ratio.

This problem was first studied by Platzman and
Bartholdi [26]. They proposed a heuristic, which was
based on the Sierpinski space-filling curve, in order to
define a universal ordering of the unit square [0, 1]2

under the Euclidean metric. Their heuristic visits
the points of the unit square in the order of their
appearance along the space-filling curve. They provided
a logarithmic upper bound which was shown to be tight
up to a constant by Bertsimas and Grigni [3]. Bertsimas
and Grigni further showed logarithmic lower bounds for
other space-filling curves and they conjectured that any
universal ordering has a logarithmic lower bound for the
n× n grid.

In this work, we disprove this conjecture by showing
that there exists a universal ordering of the n × n grid

with competitive ratio of O
(

logn
log logn

)
. The heuristic

we propose defines a universal ordering of the grid’s
vertices based on a generalization of the Lebesgue space-
filling curve. In order to analyze the competitive ratio
of our heuristic, we employ techniques from the theory
of geometric spanners in Euclidean spaces. We finally
show that our analysis is tight up to a constant.

1 Introduction

The traveling salesman problem (TSP) is perhaps one
the most well-studied and intriguing combinatorial op-
timization problems: consider a delivery person who
needs to deliver parcels to specific places in a city and
her intention is to visit all places, by forming a tour
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which minimizes the total distance. The special case
that the visited places are points in the plane and their
pairwise distance is the Euclidean, is called the Eu-
clidean TSP.

Consider now a different situation where the deliv-
ery person has a fixed list of clients and every day has
to serve a new subset of them; hence, every day she
should solve a new instance of the TSP. Rather than
re-optimizing her delivery routes every day, a very sim-
ple heuristic would be to define a universal ordering or a
master tour among the whole list of clients and each day
to adjust the tour to the clients that need to be served,
by following the order that they appear in the master
tour. The goal is to define a universal ordering that
produces tours that can serve as good approximation
of the optimal tour for any potential subset of clients,
i.e. with low competitive ratio. This is known as the
universal traveling salesman problem (UTSP).

UTSP was first studied in the seminal paper of
Platzman and Bartholdi [26] almost 30 years ago. They
proposed a space-filling heuristic to define a universal
ordering of the unit square [0, 1]2 under the Euclidean
metric. They used the Sierpinski space-filling curve
which is a bijection from the unit interval to the unit
square; their heuristic visits the points of the unit square
in the order of their appearance along this curve. They
showed a logarithmic upper bound on the competitive
ratio of that heuristic, which is until today the best
known guarantee for the Euclidean space. They also
conjectured that this bound could be reduced to a
constant, which was later disproved by Bertsimas and
Grigni [3]. They provided a counter example showing
that the bound of Platzman and Bartholdi was tight
up to a constant factor, and they showed similar lower
bounds for other space-filling curves, like the Hilbert
and the Peano curve. They conjectured that for any
space-filling heuristic, or more strongly for any universal
ordering, of an n × n grid, the competitive ratio is
Ω(log n). More recently, Hajiaghayi, Kleinberg and
Leighton [16] showed the first general lower bound of

Ω
(

6

√
logn

log logn

)
for any universal ordering of the n × n

grid, which reinforced the conjecture.
In this work, though, we disprove the conjecture of

Bertsimas and Grigni [3].
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Theorem 1.1. There exists a universal ordering of the

n× n grid with competitive ratio of Θ
(

logn
log logn

)
.

Techniques. We define a total ordering on the
vertices of the n × n grid, which we call generalized
Lebesgue space-filling ordering. Similarly to [26], our
ordering is based on a space-filling curve1. Precisely,
it is an extension of the Morton Order, which is based
on the Lebesgue space-filling curve2 (also known as Z-
curve).

In order to analyze the competitive ratio of our
heuristic, we employ techniques from the theory of
geometric spanners in Euclidean spaces3. A central tool
in our analysis is the so-called isolation property which
was introduced by Das, Narasimhan and Salowe in [9].
A subset E of edges satisfies the isolation property, if
for a constant c > 0 and any edge e ∈ E of weight w(e),
it is possible to place a hypercylinder4 of radius and
height c · w(e), such that its axis is a subset of e and it
does not intersect any other edge of E. It was shown in
[9], that if E satisfies the isolation property, then it has
total weight which is only a constant factor away of the
weight of the Steiner minimal tree on the endpoints of
E.

A crucial part of our proof is the definition of a
property which we call pseudo-isolation and which is a
stronger version of the isolation property. The main
difference is that the parameter c of the isolated box
around the edge is no longer a constant, but can be
a function of n. When a set of edges satisfy pseudo-
isolation, we show that their total weight is O(1/c)
away5 from the weight of the minimum Steiner tree.
This allow us to obtain the desired competitive ratio,
as in our case it is 1/c = O(log n/ log log n). However,
in our way to obtain this stronger bound, we sacrifice
in simplicity and as a result both the region and the

1We refer the reader to [2] for more discussion on space filling

curves and their properties.
2Space-filling curves are continuous mappings from a 1-

dimensional space onto a higher-dimensional space. Usually the

1-dimensional space is the [0, 1] interval (like in Hilbert, Peano and
Sierpinski curves). Technically, by considering [0, 1], the Lebesgue

curve lacks the continuity requirement to be a space-filling curve.
However, a standard trick is that if a Cantor set is used instead,
the continuity is restored and there is no violation on the defini-

tion of Lebesgue curve (see discussion in [2]). Accordingly, the

generalized Lebesgue space-filling curve can be defined by consid-
ering an appropriate Cantor set.

3We refer the reader to [10, 23] for a detailed treatment of the

subject.
4In this work we are only interested in the two dimensional

space, in which case the hypercylinder is just a square.
5We remark, that a straight-forward generalization of the

techniques that prove the isolation (see also [28]), if one leaves
c as a function of n, it would obtain a O(1/c2) bound.

condition that we define are now less elegant. It is no
longer a box, but a much more complicated to define
region.

Open Questions. We remark that the the com-
petitive ratio can be analyzed mainly as a function of the
number of vertices, n, of the metric space [14, 16, 18],
but also as a function of the number of requested
vertices, k, [3, 26]. We note that the upper bound
of Platzman and Bartholdi [26] is with respect to k,
i.e. O(log k), and trivially a logarithmic bound holds
with respect to n. The lower bound of Bertsimas and
Grigni [3], regarding the universal ordering suggested in
[26], is again with respect to k. However, after a closer
look at their lower bound constructions, all space-filling
curves examined in [26] have logarithmic lower bounds
with respect to n, as well.

Overall, regarding an n × n grid under the short-
est path metric, the competitive ratio of the Sier-
pinski space-filling ordering is Θ(log n) and Θ(log k)
[3, 26], whereas the competitive ratio of the General-
ized Lebesgue space-filling ordering is Θ(log n/ log log n)
(Theorem 1.1) and Θ(k) (Remark 4.1). It is therefore
clear that the two universal orderings are incomparable.
There are two natural questions that are left open:

1. Is there a universal ordering with competitive ratio
of o(log k)?

2. Is there a universal ordering with competitive ratio
of O(min{log k, log n/ log log n})?

Related Work. The traveling salesman problem
is one of most fundamental NP-hard optimization prob-
lems, which is even NP-hard to approximate with a ratio
better than 220/219 [25], unless P = NP . It is further
well-known that the Euclidean TSP is NP-complete [24].

For the last forty years, the 3/2-approximation al-
gorithm due to Christofides [8] is the best known ap-
proximation for the metric TSP, where the pairwise
distances form a metric space. During the last years,
improvements have been noted regarding the graphic
TSP, a special case of the metric TSP, where the un-
derlying metric is defined by shortest path distances
in an arbitrary undirected graph. Gharan, Saberi and
Singh [11] gave an (1.5 − ε)-approximation algorithm,
for ε of the order 10−12. Mömke and Svensson [21]
suggested an algorithm with a better approximation of
1.461, which was later improved to 13/9 by a better
analysis of Mucha [22]. The best known approximation
algorithm for the graphic TSP is 7/5 due to Sebö and
Vygen [30]. Grigni, Koutsoupias and Papadimitriou [13]
showed a PTAS for the planar TSP, where the metric
is defined by shortest path distances in a planar graph.
For weighted planar graphs, Klein [19] improved the



running time of PTAS to linear. Regarding the Eu-
clidean TSP, a PTAS is also known due to the seminal
work of Arora [1] and Mitchell [20].

Jia et al. [18] introduced the notion of universality
in the context of optimization problems, where the de-
signer seeks of a single structure that simultaneously ap-
proximates the optimal solution for every possible input.
They considered the universal versions of three well-
studied combinatorial optimization problems, the trav-
eling salesman, the Steiner tree and the set cover prob-
lems, and they provided several upper and lower bounds
on their competitive ratio. Regarding the UTSP, they
showed an upper bound of O(log4 n/ log log n) for ar-
bitrary metric spaces on n vertices. For the special
case of doubling metrics, (which includes both constant-
dimensional Euclidean and growth-restricted metrics),
their algorithms achieve a bound of O(log n). Haji-
aghayi, Kleinberg and Leighton [16] showed an upper
bound of O(log2 n) for planar graph metrics and more
generally H-minor-free metrics of n points. The best
known upper bound so far is due to Gupta, Hajiaghayi
and Räcke [14] who showed an O(log2 n) bound that
holds for general metrics of n vertices.

Gorodezky, Kleinberg, Shmoys and Spencer [12]
showed a lower bound of Ω(log n) for general graph met-
rics (in particular Ramanujan graphs under the short-
est path metric). As mentioned earlier, Hajiaghayi,
Kleinberg and Leighton [16] showed a lower bound of

Ω
(

6

√
logn

log logn

)
for any universal ordering of the n × n

grid.
The stochastic version of UTSP is known as the a

priori TSP, in which case there is a fixed probability dis-
tribution over the subsets of vertices, and the designer
seeks a master tour that minimizes the expected weight
of the induced tour [4, 12, 29, 31].

Very related to the notion of the universal solutions,
is the concept of oblivious routing [14, 15, 17, 27], where
routing decision are made without any knowledge of the
current state of the network. The concept of universal
solutions has also been used in other contexts, notably
in the context of hash functions [5] and routing [32].
Finally, there is also some connection with the notion
of coordination mechanisms [6], where the task is to
design algorithms with good equilibrium solutions, and
also with the design of universal ordered protocols which
is discussed in [7].

2 Preliminaries

Given a total ordering � of a metric space (V, d), and
any finite subset S ⊆ V of vertices, v1 � v2 � . . . � vm,
by adopting the convention that vm+1 = v1, we define
the tour T�(S) on S to be the union of the edges

(vi, vi+1), for 1 ≤ i ≤ m. We further define the weight of
an edge e = (v, u) to be w(e) = d(v, u) and the weight
of a set of edges, E, to be w(E) =

∑
e∈E w(e). This

notation naturally extends to a tour T , by viewing T
as a set of edges, hence w(T�(S)) =

∑m
i=1 d(vi, vi+1) =∑

e∈T w(e). We denote by T ∗(S) an optimal tour of
S, i.e. if Sm is the permutation group of S, then
w(T ∗(S)) = infπ∈Sm w(Tπ(S)).

Competitive ratio. The competitive ratio of the
universal ordering � is defined by

sup
S⊆V

w(T�(S))

w(T ∗(S))
.

Grid Gn. We work on the n × n grid Gn with
the shortest path metric. For convenience we place the
vertices of the grid on the plane and use the `2 metric6.
In particular, using the standard coordinate system, like
in [16], we define Gn as follows

Gn =

{(
2i− 1

2n
,

2j − 1

2n

)
, for 1 ≤ i, j ≤ n

}
.

Any segment parallel to the x or y axis is called
horizontal or vertical, respectively.

3 Generalized Lebesque Space-filling Ordering

We define our universal ordering of the vertices of
Gn, by successively subdividing the unit square [0, 1]2

into smaller squares. At each level of refinement, we
partition each square into smaller squares and we order
them lexicographically. The order of the squares induces
a partial order among vertices that belong to different
squares. We perform sufficiently many iterations, such
that the level of refinement guarantees a universal
ordering of Gn; at the last level of refinement, each
square should contain at most one vertex from Gn.

In particular, let r be the positive integer such that
(r−1)r−1 < n ≤ rr. We divide initially [0, 1]2 and later
each smaller square into a r×r grid of congruent equal-
sized squares, {Qij , 1 ≤ i, j ≤ r}, such that the position
of eachQij ’s center is the point7

(
2i−1
2r , 2j−12r

)
. We define

an ordering � among Qij ’s that induces an ordering
among vertices of different squares, i.e. if Qij � Qi′j′ ,
then for any v ∈ Qij and u ∈ Qi′j′ , v � u.

Ordering of Qij’s. For any pair of squares Qij
and Qi′j′ , at the same level of refinement, Qij � Qi′j′

if and only if either i < i′, or i = i′ and j < j′. See
Figures 1(a) and 1(b) for an exposition of the ordering
for 1 and 2 successive subdivisions and for r = 3. By

6Note that this affects the competitive ratio by only a constant

factor, as this mapping has distortion of
√

2.
7Note that indices i and j are associated with x and y co-

ordinates, respectively.



(a) (b)

(c) (d)

Figure 1: (a) and (b) illustrates the universal ordering
of the squares for 1 and 2 successive subdivisions,
respectively. (c) and (d) illustrates the first and second
iteration of the generalized Lebesgue space-filling curve.

our choice of the parameter r, this recursive procedure
will eventually decide an order among every two points
in [0, 1]2, after r subdivisions 8.

As mentioned earlier, our ordering is based on a
generalization of the Lebesgue curve. Figures 1(c) and
1(d) show the generalized Lebesgue space-filling curve
for 1 and 2 successive subdivisions.

4 Analysis

In this section, we provide the competitive analysis
of the generalized Lebesgue space-filling heuristic. In
Section 4.1 we introduce some additional definitions and
notation that will be used throughout the analysis. In
Section 4.2 we give the general structure of the proof of
Theorem 1.1, while in Section 5 we provide the proofs
of several technical lemmas that are used in the proof
of the main theorem.

4.1 Definitions.

Let S ⊆ Gn be the set of requested vertices, T be the
set of edges of the tour produced by the generalized

8Note that some vertices may belong to more than one squares,
if they lie on the border of some subdivision. In order to define

the order consistently, we (arbitrarily) associate each such vertex
with exactly one of those squares.

Lebesgue space-filling heuristic, and T ∗ be an optimal
tour on S.

t-division and Q. We call t-division of [0, 1]2, for
t ∈ {1, . . . , r}, the partition of [0, 1]2 into a rt × rt

grid of congruent equal-sized squares, Qt = {Qtij , 1 ≤
i, j ≤ rt}. By convention, Q0 = {[0, 1]2} and Q =
∪t∈{0,...,r}Qt. Similarly, we define the t-division of any
square Q ∈ Q.

Level of edge, E(Q). An edge e = (v, u) belongs
to level t for some t ∈ {1, . . . , r}, if and only if:

i) v and u lie in the same square, Q ∈ Qt−1,

ii) v and u lie in different squares in Qt.

We further say that e is an edge of Q (or e belongs to
Q) if Q is the smallest square of Q that contains e. We
denote by E(Q) the set of all edges of E that belong to
Q.

Vertex Coordinates. Let v be a vertex with v ∈
Qtij for some t-division. We define its coordinates w.r.t.
the t-division, as it(v) = i, jt(v) = j. Similarly, for
v ∈ Q, we define the relative coordinates iQ(v), jQ(v)
of v w.r.t. Q, referring to the square Qij that contains
v in the 1-division of Q. When v is the endpoint of
some edge of level t, we drop index t, when there is no
ambiguity.

When it is clear from the context that i is an
integer, we abuse notation and use the shorthand i ∈
[i1, i2] to denote that i is an integer in the interval
[min{i1, i2},max{i1, i2}]. We further use the following
notation: (i1, i2] = [i1, i2] \ {i1}, [i1, i2) = [i1, i2] \ {i2}
and (i1, i2) = [i1, i2] \ {i1, i2}.

Edges within S. We denote by E(S) the set of
edges within S, i.e. E(S) = {(v, u)|v, u ∈ S}. Note
that E(S) is a superset of T .

4.1.1 Properties and Grouping of Edges. Our
analysis uses various groupings and transformations of
edges. In this section, we collect some basic definitions
of properties and groupings of the edges.

Slope Grouping. An edge e = (v, u) is called
column if i(v) = i(u), row if j(v) = j(u), double-row if
|j(v)−j(u)| = 1 and i(v) 6= i(u), and diagonal otherwise.
We emphasize that for technical reasons, double-row
edges are not considered as diagonal. See Figure 2.

Length Grouping. An edge e = (v, u) is called
short if |i(v)− i(u)| ≤ 2 and |j(v)− j(u)| ≤ 2, otherwise
it is called long. See Figure 2.

Well-placed. A set E of edges is called well-placed
(See Figure 2) if for every pair of edges e = (u, v), e′ =
(u′, v′) ∈ E of the same level:

i) if e, e′ are both column edges on the



Figure 2: The figure depicts the t-division of some
subregion of [0, 1]2 and the four bigger squares are
derived from the (t−1)-division of [0, 1]2 (also r = 6). It
shows an example of well-placed edges of level t, where
the solid and dashed edges are, respectively, the column
and diagonal edges and the dotted edges are the row
and double row edges. Additionally, all the edges in the
top left square are short and in the top right square are
long.

same column, i.e. i(v) = i(v′), then ei-
ther max{j(v), j(u)} ≤ min{j(v′), j(u′)} or
max{j(v′), j(u′)} ≤ min{j(v), j(u)},

ii) if neither of e, e′ is a column edge
and e, e′ ∈ E(Q), for some Q, then ei-
ther max{i(v), i(u)} ≤ min{i(v′), i(u′)} or
max{i(v′), i(u′)} ≤ min{i(v), i(u)}.

We note that the edges produced by our heuristic
are well-placed. This is true because for any t-division of
[0, 1]2, the heuristic orders all the squares of each column
in a bottom up fashion; therefore, if the condition for
well-placed edges didn’t hold for column edges, the
universal ordering would be violated. Regarding the rest
of the edges, note that for any square Q, the heuristic
orders the columns of the 1-division of Q from left to
right.

We will next define the stronger property of a well-
distributed set of edges to bound short edges produced
by several transformations of long edges. First, we give
the definition of bounded boxes around edges.

Bounded boxes. Let e = (v, u) be an edge of
level t. We define the bounded box Ae of e as the
minimum rectangular region formed by the union of
Qtij ’s that contains e, i.e. Ae is the union of Qtij , for
all i ∈ [i(v), i(u)] and j ∈ [j(v), j(u)].

We now define some extended versions of this no-
tion, that for technical reasons will be defined differ-

(a) (b)

Figure 3: The figures showAe, Be,Γe for a diagonal edge
(a) (they are similarly defined for column edges) and for
a double-row edge (b) (they are similarly defined for row
edges). Specifically, suppose that the edge is of level t,
then the squares in the figures are of the t-division; Ae
is the shaded rectangle, Be is the rectangle with bold
borders and Γe is the region with dashed borders. Note
that in both cases the two squares of Γe \Ae should not
intersect S.

ently for edges with different slopes. Let first e be a
column or diagonal edge with i(v) ≤ i(u). We define
the extended bounded box Be as the union of Ae and all
squares9 Qt(i(v)−1)j , Q

t
(i(u)+1)j , for all j ∈ [j(v), j(u)],

(in other words, we extend Ae by one column on the
left and one column on the right). Let Γ′e be the re-
gion defined by the intersection of Ae with the region
between the horizontal lines that pass through v and
u. If there exist Qt(i(v)−1)j1 and Qt(i(u)+1)j2

empty of

points of S, for some j1, j2 ∈ (j(v), j(u)), we define
Γe = Γ′e ∪ Qt(i(v)−1)j1 ∪ Q

t
(i(u)+1)j2

. If any of these two

squares doesn’t exist, then Γe is undefined10.
For row and double-row edges, Be and Γe are

defined accordingly after swapping the axes x, y (e.g.
Be is the extension of Ae by one row above and one row
below). See Figure 3 for an illustration of Ae, Be and
Γe. By A

o
we denote the interior of a region A.

Well-distributed. We call a set of edges E ⊆
E(S) well-distributed (See Figure 4) if we can assign
a value te ∈ {1, . . . , r} to each edge e = (v, u), such that

i) in the te-division of [0, 1]2, v and u belong to
different sub-squares,

9For the extreme cases i(v) = 1 or/and i(u) = rt, in order to

define Be (and later Γe), we introduce some ”dummy” squares

Qt
0j and Qt

(rt+1)j
, for 1 ≤ j ≤ rt.

10If there is no index in (j(v), j(u)), e.g. e is a column edge with
|j(v)−j(u)| ≤ 1, Γe is undefined. However, we use Γe only for long

edges where it holds that |j(v) − j(u)| ≥ 2 (for long, column or
diagonal edges). Therefore, the reader may safely assume that if
Γe is undefined, it is because all squares Qt

(i(v)−1)j1
or all squares

Qt
(i(u)+1)j1

, for j1, j2 ∈ (j(v), j(u)), intersect S.



ii) under the convention that e belongs to level te, e
is short (more formally, |ite(v) − ite(u)| ≤ 2 and
|jte(v)− jte(u)| ≤ 2),

iii) for any pair of edges e = (v, u) and e′ = (v′, u′)
of E, with te = te′ , under the convention that e, e′

belong to level te, if either both of them are column
edges, or neither of them is, it holds that Ae 6⊆
A′e (more formally, if either both ite(v) = ite(u)
and ite(v′) = ite(u′), or both ite(v) 6= ite(u) and
ite(v′) 6= ite(u′), it holds that Ae 6⊆ A′e, where Ae
and Ae′ are defined for te-division).

Figure 4: The figure depicts the t-division of some
subregion of [0, 1]2 and the four bigger squares are
derived from the (t−1)-division of [0, 1]2 (also r = 6). It
shows well-distributed edges, for all of which we assign
the value t. The shaded and hatched regions are the
bounded boxes Ae.

Weakly and Strongly Detached. Consider an
edge e = (v, u) ∈ E(Q) and let {Qij , 1 ≤ i, j ≤ r} be
the 1-division of Q. We say that e is weakly detached if
S does not intersect any Qij , for all i ∈ (iQ(v), iQ(u))
and 1 ≤ j ≤ r. Furthermore, e is strongly detached,
if additionally S does not intersect Ae \ {Qi(v)j(v) ∪
Qi(u)j(u)}. See Figure 5.

4.2 The Proof of Theorem 1.1

Theorem 1.1 (restated). There exists a universal
ordering of the n × n grid with competitive ratio of

Θ
(

logn
log logn

)
.

We show that the generalized Lebesgue space-filling
heuristic achieves the claimed competitive ratio. Recall
that T is the set of edges of the tour produced by
the generalized Lebesgue space-filling heuristic on the
requested vertices S ⊆ Gn and T ∗ is an optimal tour on

Figure 5: The figure depicts the t-division of some
subregion of [0, 1]2 and the four bigger squares are
derived from the (t − 1)-division of [0, 1]2 (also r = 6).
It illustrates the region that S should not intersect in
order for the edges to be weakly and strongly detached;
precisely, if there are no points of S in the shaded
(green) regions, then the edge is weakly detached and if
additionally the are no points of S in the crosshatched
regions, then it is strongly detached.

S. Further, recall that r = Θ
(

logn
log logn

)
and hence we

show that w(T ) is upper bounded by O(r)w(T ∗). Before
proceeding to our analysis we give a proof roadmap.

Proof roadmap. Our analysis starts by partition-
ing and transforming T , into sets of edges that satisfy
some special properties, which make it easier to com-
pare their weight with that of the optimal tour. More
specifically, we perform the following three steps:

1. We first partition T into short and long edges. We
argue that short edges are well-distributed. Then,
we bound them by O(r)w(T ∗) in Lemma 4.1 by
using the Isolation Property of [9].

2. It is easy to check that the edges of T are well-
placed and all are weakly detached. In this step,
we transform the long edges into strongly detached
edges and a constant number of well-distributed
sets; we bound the latter case by using Lemma 4.1.
Regarding the strongly detached edges, we argue
that there are constant number of sets that are well-
placed.

3. We then transform each of those sets into pseudo-
isolated edges (defined later in the proof) and a
constant number of well-distributed sets that we
bound again by using Lemma 4.1. At the end, we
show that the edges remaining to bound form a con-
stant number of sets of long, pseudo-isolated, well-
placed edges and additionally the diagonal edges are



strongly detached. That kind of edges are handled
in Section 5.

4.2.1 First Step. As a first step we partition T into
short and long edges, T s and T `, respectively. In
Section 4.1 we argued that T is a set of well-placed
edges. Observe that the short, well-placed edges are
also well-distributed, by setting, for each edge e, the
value te to be the level that e belongs to. Hence, T s

is well-distributed and we can bound its total weight,
w(T s), by applying the following Lemma 4.1.

Lemma 4.1. Let E ⊆ E(S) be a set of well-distributed
edges. Then, w(E) = O(r)w(T ∗).

Proof. A crucial element of our proof is the so-called
Isolation Property which was defined in [9] for d-
dimensional spaces. Since our focus is on the plane,
we only give here the definition for two dimensions.

Isolation Property [9]. Let c > 0 be some
constant and F be a set of edges in the plane. If it
is possible, for an edge e ∈ F , to place a square, A,
of side length c · w(e) around e, such that e passes
through the center of A, is parallel to the two sides
of A and intersects the other two, and additionally
A∩(F \{e}) = ∅, then e is said to be isolated. F satisfies
the isolation property, if every e ∈ F is isolated.

Das, Narasimhan and Salowe [9] showed that if a
subset of edges satisfy the isolation property, then the
weight of these edges is a constant factor away from the
weight of the Steiner minimal tree of their endpoints.

Theorem 1.2 of [9]. If a set of line segments F in
the plane satisfies the isolation property and SMT is the
Steiner minimal tree of the endpoints of F ’s segments,
then w(F ) = O(1)w(SMT ).

In order to prove our lemma, we will partition
E into O(r) subsets such that each of them satisfies
the Isolation Property. Then, our lemma follows by
applying the theorem of [9] for each subset.

We first partition the edges of E according to
their slope into column Ec, row Er, double-row Edr
and diagonal Ed edges. We treat each subset X ∈
{Ec, Er, Edr, Ed} separately. We partition X into 9 sets
Xab, with a, b ∈ {0, 1, 2}, such that e = (v, u) ∈ Xab, if
a = (min{i(v), i(u)} mod 3) and b = (min{j(v), j(u)}
mod 3). Finally, we partition the edges of Xab according
to their division level t, i.e. Xab = ∪tXt

ab, where
Xt
ab contains only the subset of edges of level t. We

now claim that each of these sets satisfies the Isolation
Property for c ≥ 1/3.

To see this, note that the following statements are
true because Xt

ab is well-distributed.

• if X = Ec, for any e = (v, u) ∈ Xt
ab, no other edge

of Xt
ab intersects the squares Qtij , for max{i(v) −

2, 1} ≤ i ≤ min{i(v) + 2, rt} and j ∈ [j(v), j(u)],

• if X = Er, for any e = (v, u) ∈ Xt
ab, no other edge

of Xt
ab intersects the squares Qtij , for max{j(v) −

2, 1} ≤ j ≤ min{j(v) + 2, rt} and i ∈ [i(v), i(u)],

• if X is either Edr or Ed, for any e ∈ Xt
ab, no other

edge of Xt
ab intersects the region Ae.

Note that the set of the endpoints of the Xt
ab’s edges

is a subset of S and therefore the weight of their Steiner
minimal tree is upper bounded by w(T ∗). Since the
number of subsets Xt

ab’s is O(r) the lemma follows. �

4.2.2 Second Step. Then we proceed with T `. The
heuristic produces row or column edges that are strongly
detached, while the rest are weakly (but not necessarily
strongly) detached. Next we transform the set of edges,
T `wd ⊆ T `, that are not strongly detached, into strongly
detached edges. We replace every edge (v, u) ∈ T `wd of
level t by a set of strongly detached edges of the same
level with total weight of at least d(v, u).

Transformation to strongly detached edges.
Consider an edge (v, u) ∈ T `wd, and w.l.o.g let i(v) <
i(u). It must be that j(u) < j(v), otherwise our
ordering would imply that (v, u) is strongly detached11

(see Figure 6 for an illustration). There must be points
of S in some squares in the column of v and/or in that
of u. Let j1 = min{j : j ≥ j(u), Qti(v)j ∩S 6= ∅}, and let

j2 = max{j : j ≤ j1, Q
t
i(u)j ∩ S 6= ∅}. Let also v′, u′ be

two arbitrarily chosen representatives of Qti(v)j1 ∩S and

Qti(u)j2 ∩ S.

Figure 6: The figure shows the transformation of a
weakly detached edge (solid segment) to a set of strongly
detached edges (dashed segments).

11Moreover, if i(u) = i(v) or j(v) = j(u), the edge (v, u) is
either column or row and therefore, strongly detached.



We replace e = (v, u) with a path pe, that has
a vertical component of column edges that connects
v to v′, the edge (v′, u′) and finally a vertical path
from u′ to u (see Figure 6). Note that some of these
components may be void (e.g. if v′ = v or u′ = u).
Clearly d(v, u) ≤ w(pe). To connect v with v′ we choose
arbitrary representatives of S ∩ Qti(v)j , if they exist,

with j1 < j < j(v), and we create similarly the path
from u′ to u. Both components consist of column edges
and are trivially strongly detached. From the way we
defined indices j1, j2 it is easy to check that the edge
(v′, u′) is also strongly detached. Let T `sd be the set of
transformed edges after this step.

Partition into sets of well-placed edges. Re-
call that T `wd is well-placed and contains no column
edge. Therefore, for each square Q, at most two edges
of each T `wd ∩ E(Q) have endpoints on the same col-
umn (e.g. the solid edges of Figure 7). This means that
the column edges of T `sd (derived by the vertical com-
ponents) can be partitioned into two sets of well-placed
edges. For the rest of the T `sd’s edges, note we add one
edge (v′, u′) for each edge (v, u) of T `wd, where v′, u′ lie
on the same columns as v, u, respectively. Since, T `wd
is well-placed, the same should hold for the T `sd’s edges
that are not column. Overall, we can partition T `sd into
two sets12, of (short or long) strongly detached and well-
placed edges, Tsd1, Tsd2. Figure 7 shows such an exam-
ple, where the two sets are the dashed and dotted edges,
respectively.

Figure 7: The figure shows an example of the partition
of the transformed strongly detached edges T `sd into two
sets of well-placed edges, the dashed segments and the
dotted segments, respectively.

12We can merge the one set of column edges with the edges that
are not column into one set, since in the definition of well-placed

edges the conditions posed only between column edges or between
the rest.

We partition Tsd1, Tsd2 into short and long edge,
T ssd1, T

s
sd2, T

`
sd1, T

`
sd2, respectively. It is easy to see that

any set of well-placed and short edges is also well-
distributed by setting, for each edge e, the value te
to be the level of e. Therefore, we can upper bound
the weight of the sets T ssd1, T

s
sd2 by Lemma 4.1. Recall

that T ` \ T `wd (by definition of T `wd) forms one set of
long, strongly detached and well-placed edges, which
we denote by T `sd0. It remains to bound the weight of
T `sd0, T

`
sd1, T

`
sd2.

4.2.3 Third Step We will further partition and
transform any set E ∈ {T `sd0, T `sd1, T `sd2}, such that we
either produce short edges that we again bound their
total weight by Lemma 4.1, or the edges are pseudo-
isolated, a notion that we define next.

Pseudo-isolated edges. An edge e is pseudo-
isolated if Γ

o

e
∩ S = ∅ (see Figure 9(a)).

We first partition E into column and diagonal edges,
and the rest (row and double-row edges) and handle
each case differently.

Column and diagonal edges. We continue in
two steps. We first “chop” the edges, and then we
transform only those that are not pseudo-isolated.

Chopping. Let e = (v, u) be an edge of level t,
and w.l.o.g. assume j(v) < j(u). Let v′ be the vertex of
S∩Qti(v)j(v) with the highest y co-ordinate and u′ be the

vertex of S∩Qti(u)j(u) with the smallest y co-ordinate13.

We replace e with e′ = (v′, u′) (See Figure 8). Note that
w(e) < 3w(e′), because e is long.

Note further that the interior of Γ′e′ (see bounded
boxes in Section 4.1) does not contain any point of S,
due to the fact that e is strongly detached. Let Ecd be
the set of chopped edges after this step.

Figure 8: The figure shows the chopping of an edge, the
solid segment (v, u) is the original edge and the dashed
segment is the chopped edge e′ = (v′, u′); the shaded
region is the Γ′e′ .

Transformation. Take a chopped edge e =

13We clarify that this procedure is not a chopping of the edge
itself, but of its projection onto the y axis.



(v, u) ∈ Ecd of level t, and w.l.o.g. let i(v) ≤ i(u) and
j(v) < j(u) (the other case can be handled similarly). If
we can define Γe (see bounded boxes in Section 4.1) then

e is pseudo-isolated (Figure 9(a)); let EpsIcd be the set of
the pseudo-isolated edges. Otherwise, either all squares
Qt(i(v)−1)j or all squares Qt(i(u)+1)j , with j(v) < j < j(u)
contain points of S. Let’s assume that the first happens
(see Figure 9(b)), as the other case is similar. We choose
a representative vertex of each S ∩ Qt(i(v)−1)j , for j ∈
(j(v), j(u)). Additionally, we choose a representative for
j = j(v) and j = j(u), if there exists any14. Let v′ and
u′ be the representatives with the lowest and highest y
co-ordinate, respectively (as in Figure 9(b)). We replace
e with a path pe, that has a vertical component of
column short edges that connects v′ to u′, through the
chosen representatives, and the edges (v, v′) and (u, u′).
Clearly d(v, u) ≤ w(pe).

(a) (b)

Figure 9: Figure (a) illustrates the case that the edge is
pseudo-isolated; the shaded region is Γe. Figure (b)
shows the transformation of an edge (solid segment)
that is not pseudo-isolated to a set of short edges and
(at most) one long edge (dashed segments).

Let Ec and Ed be the column and diagonal edges of
Ecd and let E′c and E′d be the transformed edges of Ec
and Ed, respectively.

Paths induced by column edges. We partition
E′c into two well-distributed sets, E′c1, E

′
c2 as follows.

For every edge e ∈ Ec, either pe is on the left or on
the right of e15. Let E′c1 and E′c2 be the edges of the
paths with respect to the first and the second case,
respectively.

14We remark that those representatives are essential only in
the case of diagonal edges, where a double-row, long edge may
be produced, as in Figure 9(b). That way we guarantee that,
for any such edge e of level t, S doesn’t intersect the region

Ae \ {Qt
i(v)j(v)

∪ Qt
i(u)j(u)

}. Those edges will be handled along

with the rest of row and double-row edges from Step 2.
15A path p lies on the left (right) of a line segment e, if for any

horizontal line L that intersects both p and e, any point of p ∩ L
has smaller (larger) x co-ordinate than any point of e ∩ L.

We next argue that E′c1 and E′c2 are well-
distributed. For each e ∈ Ec of level t, we assign
the value t to each edge e′ of its induced path pe, i.e.
te′ = t16 The first two conditions of well-distributed
sets are trivially fulfilled for E′c1 and E′c2. Regarding
the third one, notice that Ec is well-placed and for each
e = (v, u) ∈ Ec, the endpoints of the edges of pe lie on
rows between j(v) and j(u) and only in the one side
of e (see Figure 10(a) for an illustration). Then, the
weight of each set E′c1, E

′
c2 can be upper bounded by

Lemma 4.1.

(a)

(b)

Figure 10: Figure (a) shows a set E′c1 and Figure (b)
shows a set E′d1. The thick, solid (red) segments depict
the edges of pe that are of different level than e. E.g.
in Figure (a), (v, u) is such an edge. Additionally, in
Figure (b), the dashed edges e and e′ belong to the set
F `sl.

Paths induced by diagonal edges. We partition
E′d into two sets, E′d1, E

′
d2, similarly to the previous case,

based on the relative positions of pe and e. Let F be
any of those sets. We further partition F into two sets,
Fdl, Fsl as follows: for every e′ ∈ pe of F , if e and e′ are
of different levels (see Figure 10(b) for such examples),

16For any edge e ∈ Ec of level t, there are two cases regarding

any edge e′ of pe: either e′ is of level t, or it is of level t′ < t (see
Figure 10(a)).



then e′ ∈ Fdl, otherwise e′ ∈ Fsl.
Handling Fdl. We next argue that Fdl is well-

distributed. For each e ∈ Ed of level t, we assigning the
value t − 1 to each edge e′ ∈ Fdl of its induced path
pe, i.e. te′ = t − 1. The first condition of the well-
distributed sets is satisfied because e′ should belong to
a level at most t − 1. The second condition is satisfied
because e′ should connect neighbouring sub-squares of
the (t−1)-division. Regarding the third condition, recall
that Ed is well-placed and contains only diagonal edges,
meaning that there are at most two edges (with assigned
value t − 1) with endpoints at the same squares (see
Figure 10(b) for an illustration). Overall, we can bound
Fdl by Lemma 4.1

Handling Fsl. Partition Fsl into short, F ssl, and
long, F `sl, edges. The set F ssl is well-distributed, since
Ed is well-placed, and hence, can be upper bounded by
Lemma 4.1.

Claim 4.1. F `sl is well-placed.

Proof. Note that for any e = (v, u) ∈ Ed, the path
pe contains at most one long edge, (the edge (u, u′) in
Figure 9(b)). For some squareQ, consider any two edges
of E(Q), e = (v, u) and e′ = (v′, u′), where their induced
paths, pe and pe′ , produce an edge of F `sl. W.l.o.g. let e
“precedes” e′, meaning that i(v) < i(u) ≤ i(v′) < i(u′)
(see edges (v, u) and (v′, u′) of Figure 10(b) for an
illustration). We argue that i(u) is strictly less than i(v′)
and this would lead to the fact that the two produced
long edges are well-placed.

Suppose on the contrary that i(u) = i(v′). Recall
that either both pe and pe′ are on the left of e and
e′, respectively, or on the right. Let’s assume that
the first happens. Then pe′ have vertices on column
i(v′)−1 = i(u)−1. Since e is weakly detached, there are
no requested vertices in columns (inside Q) between i(v)
and i(u), exclusive. The only way that this happens is
the case that no such column exists, i.e., i(v) = i(u)−1.
However, this would mean that pe contains only short
edges, which contradicts the fact that pe contains a long
edge. �

Note that F `sl contains only row and double-row
edges. Recall that there are two such sets, one for the
pe’s on the right of e and one for the pe’s on the left of
e. We handle those sets next, along with the set of row
and double-row edges of E. We denote the three sets as
E`r1 , E

`
r2 , E

`
r3 .

Row and double-row edges. We handle these
edges similarly to the way we handled column edges
by swapping the x, y axes. Either an edge is pseudo-
isolated, or we transform it to a set of short edges.
Similarly to the case of column edges, we partition the

short edges into constant number of well-distributed
sets that we bound by Lemma 4.1. Let EpsIr1 , EpsIr2

and EpsIr3 be the sets of pseudo-isolated edges from each
E`r1 , E

`
r2 , E

`
r3 , respectively.

4.2.4 Summarizing. Overall, for every E ∈
{T `sd0, T `sd1, T `sd2}, it remains to bound the weight of
a set of long, pseudo-isolated, strongly detached and
well-placed edges, EpsIcd , (these are the column and di-
agonal edges of Step 3 that are pseudo-isolated) and
three sets of row and double-row edges that are long,
pseudo-isolated and well-placed, EpsIr1 , EpsIr2 and EpsIr3 .
Lemma 5.1 (see Section 5) concludes the proof.

4.2.5 Lower bound. At last, we show in the next
claim that our analysis is tight up to a constant.

Claim 4.2. There exists a set S ⊆ Gn of requested

vertices, such that w(Tπ(S))
w(T∗(S)) = Ω

(
logn

log logn

)
, where π is

the generalized Lebesgue space-filling ordering.

Proof. Let S be the set of 2r vertices, v1, . . . , vr and
u1, . . . ur, such that vj , uj are the vertices of Gn that
belong to Q1

1j , Q
1
rj , respectively, with the smallest x and

y co-ordinates.
By adopting the convention that vr+1 = v1,

the tour induced by the heuristic is Tπ(S) =
{(vj , uj), (uj , vj+1)|1 ≤ j ≤ r}. Note that d(vj , uj)
and d(uj , vj+1) equal to Ω(1) and therefore, w(Tπ(S)) =
Ω(r).

The tour formed by the horizontal segments
(v1, u1), (vr, ur) and two vertical segments, one connect-
ing the vj ’s vertices and the other connecting the uj ’s
vertices, has weight O(1). Therefore, w(T ∗(S)) ≤ O(1).

Overall, w(Tπ(S))
w(T∗(S)) = Ω(r) = Ω

(
logn

log logn

)
. �

Remark 4.1. It is easy to see that the instance in the
proof of Claim 4.2 provides a lower bound Ω(k), where

k = Θ
(

logn
log logn

)
is the number of requested vertices.

An upper bound of O(k) for any universal ordering
can be easily derived by observing that the cost of each
edge of the tour is upper bounded by the weight of the
optimum tour. Therefore, the competitive ratio of the
generalized Lebesgue space-filling ordering w.r.t. the
requested vertices, k, is Θ(k).

5 Long Edges

In this section we show how to upper bound long,
pseudo-isolated and well-placed edges, supposing that
the diagonal edges are also strongly detached. As a first
step we partition the edges into constant number of sets
that satisfy the following two properties:



(1) Nested Property. A set of edges F satisfies the
Nested Property, if for any pair of edges e, e′ ∈ F ,
their extended bounded boxes Be, Be′ are either
disjoint or one is completely contained within the
other, i.e. it is either Be ⊂ Be′ , or Be′ ⊂ Be, or
B

o

e
∩Bo

e′
= ∅.

(2) Border-Nested Property. A set of edges F
satisfies the Border-Nested Property, if for any pair
e, e′ ∈ F , such that Ae′ ⊂ Be\Ae, then B

o

e′
∩Ao

e
= ∅.

Then, we show that, for any such set, the interiors
of the Γ regions are disjoint (Claim 5.3). At last, in
Lemma 5.2, we prove that the Nested Property and
the disjoint Γ interiors are sufficient in order to upper
bound the weight of those edges by O(r)w(T ∗).

Lemma 5.1. If E ⊆ E(S) is a set of long, pseudo-
isolated and well-placed edges, and additionally the
diagonal edges are strongly detached, then w(E) = O(r)·
w(T ∗).

Proof. We partition E into sets that satisfy (1) and
(2). The following claim suggests that there are only
a constant number of such sets.

Claim 5.1. There is a partition of E = E1∪ . . .∪EO(1)

such that each Ei satisfies (1) and (2).

Proof. We partition E according to their slope into
column edges Ec, diagonal edges Ed, and row or double-
row edges Er. We next show that we can partition
each of Ec, Ed, Er into at most 10, 9 and 18 sets,
respectively, such that each of them satisfies the above
nested properties17.

Column Edges. Since the set is well-placed, the
Nested Property can be restated as follows.

Nested Property. A set of edges, F , satisfies the
Nested Property if:

(1a) For any two edges, e = (v, u) and e′ = (v′, u′), of
F that are of the same level, if i(v) = i(v′), then
B

o

e
∩Bo

e′
= ∅.

(1b) For any two edges, e = (v, u) and e′ = (v′, u′), of
F that are of the same level, if i(v) 6= i(v′), then
B

o

e
∩Bo

e′
= ∅.

(1c) For any two edges e, e′ ∈ F of levels t and t′,
respectively, with t < t′, either Be′ ⊂ Be or
B

o

e
∩Bo

e′
= ∅.

We partition Ec into 10 sets that satisfy (1a), (1b),
(1c) and (2) in two steps.

17This holds for r ≥ 2, which is clearly in the range of interest.

First partition. We first partition Ec into 2 sets,
Ec1, Ec2, each of which satisfies (1a) of the Nested
Property. This partition can be easily done, since Ec1
and Ec2 are well-placed, as subsets of E. Particularly,
we order the edges, e = (v, u), of Ec that are of the same
level and has the same i(v), according to the value of
min{j(v), j(u)}. By following that order, we alternately
add each edge to the sets Ec1 and Ec2.

Second partition. In the second step we partition
each of the Ec1, Ec2 into 5 sets, Ec11 . . . Ec15 and
Ec21 . . . Ec25, for which we show that (1b) and (1c) of
the Nested Property and the Border-Nested Property
are satisfied. Let F be any of the sets Ec1, Ec2.

(a) (b)

Figure 11: Figure (a) shows a column colouring that
satisfies Property (1b). Figure (b) illustrates the re-
strictions in order to satisfy Properties (1c) and (2);
the crosshatched column should be differently painted
from the shaded columns.

For every Q ∈ Q, let C(Q) = {C1(Q), . . . , Cr(Q)}
be the set of its columns w.r.t. the 1-division of Q,
i.e. if {Qij , 1 ≤ i, j ≤ r} is the 1-division of Q, then
Ci(Q) = ∪j∈{1,...,r}Qij . Further, let C = ∪Q∈QC(Q)
be the set of all columns. We define a column colouring
χ : C → {χ1, . . . , χ5}, which induces an edge colouring
χ∗ : F → {χ1, . . . , χ5}, where each edge inherits
the colour of the column that it belongs to. More
specifically, for each edge, e = (v, u) that belongs to
some E(Q), we define χ∗(e) = χ(CiQ(v)(Q)). We then
define the partitions as Fa = {e ∈ F |χ∗(e) = χa}, for
1 ≤ a ≤ 5.

In order to paint the columns we construct a graph
H and associate each column to a unique vertex of
H (we though allow more than one columns to be
associated with the same vertex); a vertex colouring of
H will correspond to the column colouring. H will be
carefully constructed such that any vertex colouring of
H will guarantee (1b), (1c) and (2) for each Fa.

Sufficient conditions for satisfying (1b), (1c),
(2). In order to satisfy (1b), it is sufficient that, for
any Q ∈ Q, any three consecutive columns of Q are
differently coloured and moreover, if Q = Qtij and



(a)

(b)

Figure 12: Figure (a) shows the first two steps of the
H’s construction for column edges, where solid edges are
added in step 1 and the dashed one in step 2. Figure
(b) illustrates the contraction of the vertices in step 3.

Q+1 = Qt(i+1)j (i.e. Q+1 is Q’s right neighbour),

Cr−1(Q) has different colour from C1(Q+1), and Cr(Q)
has different colour from both C1(Q+1) and C2(Q+1)
(see Figure 11(a)). In order to satisfy (1c) and (2),
it is sufficient that, for any square Q ∈ Q and any
column Ci(Q), any ”smaller” columns (derived from any
t-division of Q) on the vertical borders of Ci−1(Q) and
Ci+1(G) and on the right vertical border of Ci−2(Q)
and on the left vertical border of Ci+2(Q) have different
colour from Ci(Q) (see Figure 11(b)). If i ∈ {1, 2, rt −
1, rt}, we can accordingly define the same restrictions
by using further the t-division of Q’s left and right
neighbours.

Graph construction. Bearing that in mind, we
construct H as follows, in three steps.

1. For every Q ∈ Q, let V (Q) = {v1(Q), . . . , vr(Q)}
be a set of ordered vertices. We associate each
Ci(Q) with vertex vi(Q). We construct a graph

HQ on V (Q) by adding an edge between vi(Q) and
vi+1(Q), for i < r, and an edge between vi(Q) and
vi+2(Q), for i < r − 1 (these are the solid edges
of Figure 12(a)). Those edges help to satisfy (1b)
between columns of the same square.

2. For every t-division of [0, 1]2, we add an edge
between vr−1(Qtij) and v1(Qt(i+1)j) and an edge

between vr(Q
t
ij) and v2(Qt(i+1)j) for every i < r

and j (these are the dashed edges of Figure 12(a)).
Those edges help partially to satisfy (1b) between
columns of different squares. To completely satisfy
(1b), we further need an edge between vr(Q

t
ij) and

v1(Qt(i+1)j) which will clearly appear in the next
step.

3. We derive H by connecting HQ’s via contracting
vertices18. For every square Q ∈ Q, with {Qij , 1 ≤
i, j ≤ r} being its 1-division, we contract v1(Qij)
and vr(Qij) with vi(Q), for all i < r and j
(see Figure 12(b)). For convenience, we keep the
vertices in the sets V (Q) and V (Qij). Notice that
vr(Qij) and v1(Q(i+1)j) are connected via an edge
by the construction of HQ; this completes (1b).

By the above contractions, Ci(Q) is painted by the
same colour with the columns on the borders of
Ci(Q). Therefore, if Ci(Q) is differently painted
from the columns Ci−1(Q), Ci−2(Q), Ci+1(Q),
Ci+2(Q), it is also differently painted from the
columns on their borders. Hence, any vertex
colouring of H would satisfy (1c) and (2)

Figures 13(a) and 13(b) show an example of column
colouring of Q and {Qij , 1 ≤ i, j ≤ r}, respectively,
induced by some vertex colouring of H.

Claim 5.2. The chromatic number of H is at most 5.

Proof. We paint the vertex of H by using a greedy
colouring. This means that we consider the vertices in
sequence and assign to each vertex some available colour
which is different from its painted neighbours’ colours.

The first vertex in the order is v1([0, 1]2). We order
the rest of the vertices based on the V (Q)’s. For any
squares Q ∈ Qt, Q′ ∈ Qt′ , such that t < t′, all vertices of
V (Q) precede all vertices of V (Q′) \V (Q). This defines
a partial order of the vertices. We order the rest of the
vertices arbitrarily.

We next argue that by following such an order,
while painting a vertex, we have painted at most 4 of

18The contraction of two vertices v1 and v2 is the replacement

of those vertices with a single vertex v, such that v is adjacent to
the union of all edges to which v1 and v2 were originally adjacent.



(a)

(b)

Figure 13: The Figures show an example of column
colouring of Q, Figure (a), and {Qij , 1 ≤ i, j ≤ r},
Figure (b). This particular coloring could have been
induced by a vertex colouring of H.

its neighbours, meaning that there is always a colour
available to paint that vertex. To see this, suppose that
we paint the vertices of some V (Q). The vertex v1(Q)
has already been painted as a vertex of some V (Q′),
with Q′ of lower division than Q. v2(Q) has at most
four neighbours that are already painted: v1(Q), v3(Q),
v4(Q) and the neighbour introduced in step 2. The same
holds for vr−1(Q). For any other vertex v ∈ V (Q), the
only neighbours that may have been painted before v
belong to V (Q), hence, by the construction of HQ, there
are at most 4. �

Diagonal Edges. The idea of the proof is similar
to the case of column edges. The main difference is
that the vertices of H do not represent all columns
but only the ones that intersect S. Recall, that
the diagonal edges are strongly detached, resulting

in the fact that the endpoints of each edge belong
to consecutive “activated” columns. A slightly more
generalized analysis than the one for the column edges
results in the desired partition.

Row and double-row Edges. This case should
be handled separately because the Be is defined differ-
ently. However, by combining the above ideas for col-
umn and diagonal edges, we can easily prove this case.
In fact a more careful analysis may reduce the number
of groups needed. �

Claim 5.3. Let E′ be a subset obtained by Claim 5.1.
Then, for every e, e′ ∈ E′, it holds Γ

o

e
∩ Γ

o

e′
= ∅.

Proof. Note that the edges of E′ are pseudo-isolated
(i.e. for any e ∈ E′, Γ

o

e
∩ S = ∅) and either all are

column, or all diagonal, or all row and double-row,
meaning that their Be and Γe have the same orientation.

For any e, e′ ∈ E′, if B
o

e
and B

o

e′
are disjoint, then

trivially Γ
o

e
and Γ

o

e′
are disjoint. Consider the case that

Be′ ⊂ Be, and suppose that e is of level t. Then Ae′ is
entirely contained within one square of the t-division of
[0, 1]2. This means that either Ae′ ⊂ Ae or Ae′ ⊂ Be\Ae
(see Figure 14 for examples of diagonal edges).

Figure 14: The figure shows the Be region, where the
region with dashed borders is the Γe and the shaded
region is the Ae. The regions with dotted borders are
possible Be′ ’s for the case that Be′ ⊂ Be.

In the first case, A
o

e′
∩ Γ

o

e
= ∅ since e is pseudo-

isolated. Then, trivially, Γ
o

e
∩ Γ

o

e′
= ∅. In the second

case, by Property (2), it holds that B
o

e′
and A

o

e
are

disjoint. Then, again the fact that e is pseudo-isolated
implies that B

o

e′
and Γ

o

e
are disjoint and the claim

follows. �

Finally, the following lemma (Lemma 5.2) shows
that the Nested Property in combination with the fact
that, for every e, e′ ∈ E′, it holds that Γ

o

e
and Γ

o

e′
are

disjoint, is sufficient in order to upper bound the weight
of each set, E′, by O(r) · w(T ∗). This concludes the
proof of the lemma. �



Lemma 5.2. Let E ⊆ E(S) be a set of edges that
satisfies the Nested Property and additionally, for every
e, e′ ∈ E, Γ

o

e
∩ Γ

o

e′
= ∅. Then w(E) ≤ O(r) · w(T ∗).

Proof. For this proof we employ techniques from the
theory of geometric spanners in Euclidean spaces. We
partition the set E and for each subset, we either
associate each edge e with a distinct optimum’s segment
of weight O(1/r)w(e), or we process the edges one
by one and at each step we transform the optimum
such that its horizontal weight reduces by O(1/r)w(e).
Either way, we bound the subset’s weight by O(r) times
the optimum.

For analysis purpose, we bound the weight of each
subset by using a constant approximation of the op-
timum instead of the optimum itself. We proceed by
partitioning the edges and transforming the optimum.

First partition. We partition E into two sets Ecd
and Er; Ecd contains all the column and diagonal edges
and Er contains all the row and double-row edges. We
prove the statement only for the set Ecd. The statement
can be similarly proved for the set Er after swapping the
axes x, y.

Transformation of the optimum. We first
transform the Steiner minimal tree (SMT) that connects
all the endpoints of the edges of Ecd, by replacing any
non-vertical and non-horizontal edge (v, u) of the SMT
with two edges (v, z) and (z, u), such that (v, z) is
vertical and (z, v) is horizontal. We denote this graph
by Φ and clearly w(Φ) = O(1)w(SMT ) = O(1)w(T ∗).
Hence, it is sufficient to bound the weight of Ecd by
O(r)w(Φ).

Second partition. We partition Ecd into two
groups of edges, Ecd1 and Ecd2, based on the intersec-
tion of Φ with Γ

o

e
. More specifically, if w(Φ ∩ Γ

o

e
) <

w(e)/
√

2r then e ∈ Ecd1, otherwise e ∈ Ecd2. Due to
the fact that the Γ

o

e
’s are disjoint, w(Ecd2) ≤ O(r)w(Φ).

Handling Ecd1. We next show that w(Ecd1) ≤
O(r)w(Φ), which concludes the lemma. More precisely,
if hw(Φ) is the weight of the horizontal segments of
Φ, we will show that w(Ecd1) ≤ O(r)hw(Φ), which is
clearly stronger. We are going to process the edges
of Ecd1 one by one and while processing edge e, we
transform Φ into Φ′, such that:

i) Φ′ connects all the endpoints of the unprocessed
edges and contains only vertical and horizontal
segments,

ii) hw(Φ) − hw(Φ′) = O(1/r)w(e) (which will lead to
the desired bound),

iii) for every unprocessed e′ of Ecd1, w(Φ∩Γ
o

e′
) < w(e)√

2r
.

Figure 15: The figure shows the processing order of the
edges. Rbe is the shaded region and Rae is the dotted
region.

For the rest of the proof, for simplicity, the reader may
consider that any vertical segment of Φ and Φ′ has zero
weight. In order to define the processing order of the
edges of Ecd1 we need some more definitions.

Nested tree. We next define a nested tree (NT) to
be a tree capturing the hierarchy induced by the Nested
Property. For every edge e ∈ Ecd1 we introduce a vertex
ve; we further consider a vertex ve∗ to be the root of the
NT that we associate with a virtual edge e∗, such that
Be∗ is the region [0, 1]2. Then, NT can be defined by
the following property: ve is an ancestor of ve′ in NT,
if and only if Be′ ⊆ Be.

For every edge e ∈ Ecd1, Be \ Γe forms two
disjoint regions, Rbe and Rae , below and above19 of Γe,
respectively (See Figure 15). For every non-leaf vertex,
ve, of the NT, we partition the children of ve into two
sets Cbe and Cae , such that for any children ve′ of ve,
if Be′ intersects Rbe, then e′ belongs to Cbe , otherwise e′

belongs to Cae . If ve is the root of NT, we set all children
to belong to Cbe .

Processing order. We now define a total order
among the vertices of NT that will serve as the process-
ing order of the edges. For every non-leaf vertex ve, all
the vertices of the Cbe ’s subtrees precede ve in the order
and all the vertices of Cae ’s subtrees follow ve in the
order. Consider any two vertices ve and ve′ that both
belong to Cbe′′ or both belong to Cae′′ , for some vertex
ve′′ of NT. Suppose that the bottom20 horizontal border
of Be has smaller y co-ordinate than the bottom hori-
zontal border of Be′ , then all the vertices of the subtree
of ve precedes all the vertices of the subtree of ve′ . See
Figure 15 for an illustration.

19A region A lies below (above) of a region B, if for any vertical
line L that intersects both A and B, any point of A∩L has smaller

(larger) y co-ordinate than any point of B ∩ L.
20The bottom horizontal border of Be is the horizontal border

with the smallest y co-ordinate.



Figure 16: The figure shows the transformation of Φj

for the cases of V2 = ∅ and V1, V2 6= ∅. The shaded
region is the De and the dashed component represents
Φjv. We transform Φj by removing Φjv and adding the
thick, solid (red) segments.

Transforming Φ. For every edge e, extend both
vertical borders of Be to infinity, and let L1 and L2

be the lines with the smaller and larger x co-ordinate,
respectively. We call De the region between L1 and L2

that lies below the Rae . It is not hard to check that
any e′, such that Γ

o

e′
intersects De, precedes e in the

processing order.
Suppose now that we are going to process e =

(v, u) ∈ Ecd1 and let Φj be the transformed Φ so
far. Then Φj is a graph connecting all the endpoints
of the unprocessed edges, containing only vertical and
horizontal edges and for every unprocessed e′ ∈ Ecd1,
w(Φj ∩ Γ

o

e′
) < w(e)/

√
2r. We will transform only

the part of Φj that is inside De and therefore the
transformation will not affect the portion of Φj inside
Γ
o

e′
, for any other unprocessed edge e′, meaning that the

third requirement above is guaranteed.
Let Φjv be the connected component of Φj that

contains v and is entirely between L1 and L2. Since
w(Φj∩Γ

o

e
) < w(e)/

√
2r, we easily infer that Φjv does not

intersect the borders of Rae , meaning that Φjv is entirely
in the interior of De and on its borders defined by L1

and L2. Let V1 and V2 be the intersection points of
Φjv with L1 and L2, respectively; if their intersection
includes some intervals, we represent them by infinitely
many points. Additionally, let v1 and v2 be the points
of L1 and L2, respectively, that have the same y co-
ordinate with v. We next derive Φj+1 from Φj ; for an
illustration see Figure 16.

We first remove Φjv from Φj and we add two minimal
vertical segments, the one connecting the points of V1 ∪
{v1} and the other connecting the points of V2 ∪ {v2}.

If either V1 or V2 is empty, the connectivity of the
endpoints of all remaining unprocessed edges is retained
and also hw(Φj)− hw(Φj+1) ≤ w(e)/

√
2r.

Only if both V1 6= ∅ and V2 6= ∅, we add the
horizontal segment (v1, v2) and the vertical segment
(u, u0), where u0 is the point of the segment (v1, v2)
that has the same x co-ordinate with u. Notice that
so far hw(Φj+1) ≤ hw(Φj). Finally, suppose that the
path from v to u in the current Φj+1, passes through
vi, for some i ∈ {1, 2}, then we remove the horizontal
segment (u0, vi). The connectivity of the endpoints of
all remaining unprocessed edges is retained and also
hw(Φj)− hw(Φj+1) ≤ w(e)/

√
2r.

Overall, after processing all edges of Ecd1, we can
conclude that w(Ecd1) ≤ O(r)hw(Φ). �
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[30] András Sebö and Jens Vygen. Shorter tours by
nicer ears: 7/5-approximation for the graph-tsp, 3/2
for the path version, and 4/3 for two-edge-connected
subgraphs. Combinatorica, 34(5):597–629, 2014.

[31] David B. Shmoys and Kunal Talwar. A constant ap-
proximation algorithm for the a priori traveling sales-
man problem. In Integer Programming and Combi-
natorial Optimization, 13th International Conference,
IPCO 2008, Bertinoro, Italy, May 26-28, 2008, Pro-
ceedings, pages 331–343, 2008.

[32] Leslie G. Valiant and Gordon J. Brebner. Universal
schemes for parallel communication. In Proceedings
of the 13th Annual ACM Symposium on Theory of
Computing, May 11-13, 1981, Milwaukee, Wisconsin,
USA, pages 263–277, 1981.


