400 research outputs found

    Focus on the impact of climate change on wetland ecosystem and carbon dynamics

    Get PDF
    The renewed growth in atmospheric methane (CH4)since 2007 after a decade of stabilization has drawn much attention to its causes and future trends. Wetlands are the single largest source of atmospheric CH4. Understanding wetland ecosystems and carbon dynamics is critical to the estimation of global CH4 and carbon budgets. After approximately 7 years of CH4 related research following the renewed growth in atmospheric CH4, Environmental Research Letters launched a special issue of research letters on wetland ecosystems and carbon dynamics in 2014. This special issue highlights recent developments in terrestrial ecosystem models and field measurements of carbon fluxes across different types of wetland ecosystems. The 14 research letters emphasize the importance of wetland ecosystems in the global CO2 and CH4 budget

    Post Scriptum: Wider Perspectives and the Legacy

    Full text link

    Spatial variability of CO \u3c inf\u3e 2 uptake in polygonal tundra: Assessing low-frequency disturbances in eddy covariance flux estimates

    Get PDF
    The large spatial variability in Arctic tundra complicates the representative assessment of CO2 budgets. Accurate measurements of these heterogeneous landscapes are, however, essential to understanding their vulnerability to climate change. We surveyed a polygonal tundra lowland on Svalbard with an unmanned aerial vehicle (UAV) that mapped ice-wedge morphology to complement eddy covariance (EC) flux measurements of CO2. The analysis of spectral distributions showed that conventional EC methods do not accurately capture the turbulent CO2 exchange with a spatially heterogeneous surface that typically features small flux magnitudes. Nonlocal (low-frequency) flux contributions were especially pronounced during snowmelt and introduced a large bias of -46 gCm-2 to the annual CO22 budget in conventional methods (the minus sign indicates a higher uptake by the ecosystem). Our improved flux calculations with the ogive optimization method indicated that the site was a strong sink for CO2 in 2015 (82 gCm2). Due to differences in light-use efficiency, wetter areas with lowcentered polygons sequestered 47% more CO2 than drier areas with flat-centered polygons. While Svalbard has experienced a strong increase in mean annual air temperature of more than 2K in the last few decades, historical aerial photographs from the site indicated stable ice-wedge morphology over the last 7 decades. Apparently, warming has thus far not been sufficient to initiate strong ice-wedge degradation, possibly due to the absence of extreme heat episodes in the maritime climate on Svalbard. However, in Arctic regions where ice-wedge degradation has already initiated the associated drying of landscapes, our results suggest a weakening of the CO2 sink in polygonal tundra

    Abrupt permafrost thaw triggers activity of copiotrophs and microbiome predators

    Get PDF
    Permafrost soils store a substantial part of the global soil carbon and nitrogen. However, global warming causes abrupt erosion and gradual thaw, which make these stocks vulnerable to microbial decomposition into greenhouse gases. Here, we investigated the microbial response to abrupt in situ permafrost thaw. We sequenced the total RNA of a 1 m deep soil core consisting of up to 26 500-year-old permafrost material from an active abrupt erosion site. We analysed the microbial community in the active layer soil, the recently thawed, and the intact permafrost, and found maximum RNA:DNA ratios in recently thawed permafrost indicating a high microbial activity. In thawed permafrost, potentially copiotrophic Burkholderiales and Sphingobacteriales, but also microbiome predators dominated the community. Overall, both thaw-dependent and long-term soil properties significantly correlated with changes in community composition, as did microbiome predator abundance. Bacterial predators were dominated in shallower depths by Myxococcota, while protozoa, especially Cercozoa and Ciliophora, almost tripled in relative abundance in thawed layers. Our findings highlight the ecological importance of a diverse interkingdom and active microbial community highly abundant in abruptly thawing permafrost, as well as predation as potential biological control mechanism

    Carbon budget estimation of a subarctic catchment using adynamic ecosystem model at high spatial resolution

    Get PDF
    A large amount of organic carbon is stored in highlatitude soils. A substantial proportion of this carbon stock is vulnerable and may decompose rapidly due to temperature increases that are already greater than the global average. It is therefore crucial to quantify and understand carbon exchange between the atmosphere and subarctic/arctic ecosystems. In this paper, we combine an Arctic-enabled version of the process-based dynamic ecosystem model, LPJGUESS (version LPJG-WHyMe-TFM) with comprehensive observations of terrestrial and aquatic carbon fluxes to simulate long-term carbon exchange in a subarctic catchment at 50m resolution. Integrating the observed carbon fluxes from aquatic systems with the modeled terrestrial carbon fluxes across the whole catchment, we estimate that the area is a carbon sink at present and will become an even stronger carbon sink by 2080, which is mainly a result of a projected densification of birch forest and its encroachment into tundra heath. However, the magnitudes of the modeled sinks are very dependent on future atmospheric CO2 concentrations. Furthermore, comparisons of global warming potentials between two simulations with and without CO2 increase since 1960 reveal that the increased methane emission from the peatland could double the warming effects of the whole catchment by 2080 in the absence of CO2 fertilization of the vegetation. This is the first process-based model study of the temporal evolution of a catchment-level carbon budget at high spatial resolution, including both terrestrial and aquatic carbon. Though this study also highlights some limitations in modeling subarctic ecosystem responses to climate change, such as aquatic system flux dynamics, nutrient limitation, herbivory and other disturbances, and peatland expansion, our study provides one process-based approach to resolve the complexity of carbon cycling in subarctic ecosystems while simultaneously pointing out the key model developments for capturing complex subarctic processes
    corecore