186 research outputs found

    Oval Domes: History, Geometry and Mechanics

    Get PDF
    An oval dome may be defined as a dome whose plan or profile (or both) has an oval form. The word Aoval@ comes from the latin Aovum@, egg. Then, an oval dome has an egg-shaped geometry. The first buildings with oval plans were built without a predetermined form, just trying to close an space in the most economical form. Eventually, the geometry was defined by using arcs of circle with common tangents in the points of change of curvature. Later the oval acquired a more regular form with two axis of symmetry. Therefore, an “oval” may be defined as an egg-shaped form, doubly symmetric, constructed with arcs of circle; an oval needs a minimum of four centres, but it is possible also to build polycentric ovals. The above definition corresponds with the origin and the use of oval forms in building and may be applied without problem until, say, the XVIIIth century. Since then, the teaching of conics in the elementary courses of geometry made the cultivated people to define the oval as an approximation to the ellipse, an “imperfect ellipse”: an oval was, then, a curve formed with arcs of circles which tries to approximate to the ellipse of the same axes. As we shall see, the ellipse has very rarely been used in building. Finally, in modern geometrical textbooks an oval is defined as a smooth closed convex curve, a more general definition which embraces the two previous, but which is of no particular use in the study of the employment of oval forms in building. The present paper contains the following parts: 1) an outline the origin and application of the oval in historical architecture; 2) a discussion of the spatial geometry of oval domes, i. e., the different methods employed to trace them; 3) a brief exposition of the mechanics of oval arches and domes; and 4) a final discussion of the role of Geometry in oval arch and dome design

    Интеллектуальная радиосеть с нечеткой конфигурацией

    Get PDF
    В статье обсуждаются возможности применения одноранговой радиосети стандарта IEEE 802.15.4 (ZigBee) диапазона 2,4 ГГц для работы системы, состоящей из группы малогабаритных мобильных роботов и одного командного пункта. Основная задача группы роботов – проведение разведки во время спасательных операций после техногенных и природных катастроф и аварий. Для сохранения управляемости отдельными роботами и системой в целом предлагается повысить «интеллект» системы связи за счет гибкой маршрутизации каналов между командным пунктом и конкретным мобильным роботом с тем, чтобы иметь систему с автоматическим, интеллектуальным восстановлением канала обмена данных.У статті обговорюються можливості застосування однорангової радіомережі стандарту ІЕЕ 802.15.4 (ZigBee) діапазону 2,4 Ггу для роботи системи, що складається з групи малогабаритних мобільних роботів та одного командного пункту. Основна задача групи роботів – проведення розвідки під час рятувальних операцій після техногенних та природних катастроф і аварій. Для збереження керованості окремими ротами та системою в цілому пропонується підвищити інтелект системи зв’язку за рахунок гнучкої маршрутитизації каналів між командним пунктом та конкретним мобільним роботом з тим, щоб мати систему з автоматичним, інтелектуальним відновлюванням каналу обміну даних.In the article the possibilities of application peer-to-peer radio networks of standard IEEE 802.15.4 (ZigBee) a range of 2,4 GHz for work of the system consisting of small-sized mobile robots group and one command point are discussed. The primary goal of group of robots – is carrying out of investigation during rescue operations after technogenic and natural accidents and failures. For controllability preservation by separate robots and system as a whole, it is offered to raise “intelligence” of a communication system at the expense of flexible routeing of channels between command point and the concrete mobile robot to have system with automatic, intellectual restoration of the channel of data exchange

    Combined effects of prevention and quarantine on a breakout in SIR model

    Get PDF
    Recent breakouts of several epidemics, such as flu pandemics, are serious threats to human health. The measures of protection against these epidemics are urgent issues in epidemiological studies. Prevention and quarantine are two major approaches against disease spreads. We here investigate the combined effects of these two measures of protection using the SIR model. We use site percolation for prevention and bond percolation for quarantine applying on a lattice model. We find a strong synergistic effect of prevention and quarantine under local interactions. A slight increase in protection measures is extremely effective in the initial disease spreads. Combination of the two measures is more effective than a single protection measure. Our results suggest that the protection policy against epidemics should account for both prevention and quarantine measures simultaneously

    Secondary contact and admixture between independently invading populations of the Western corn rootworm, diabrotica virgifera virgifera in Europe

    Get PDF
    The western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is one of the most destructive pests of corn in North America and is currently invading Europe. The two major invasive outbreaks of rootworm in Europe have occurred, in North-West Italy and in Central and South-Eastern Europe. These two outbreaks originated from independent introductions from North America. Secondary contact probably occurred in North Italy between these two outbreaks, in 2008. We used 13 microsatellite markers to conduct a population genetics study, to demonstrate that this geographic contact resulted in a zone of admixture in the Italian region of Veneto. We show that i) genetic variation is greater in the contact zone than in the parental outbreaks; ii) several signs of admixture were detected in some Venetian samples, in a Bayesian analysis of the population structure and in an approximate Bayesian computation analysis of historical scenarios and, finally, iii) allelic frequency clines were observed at microsatellite loci. The contact between the invasive outbreaks in North-West Italy and Central and South-Eastern Europe resulted in a zone of admixture, with particular characteristics. The evolutionary implications of the existence of a zone of admixture in Northern Italy and their possible impact on the invasion success of the western corn rootworm are discussed

    Integrated trajectories of the maternal metabolome, proteome, and immunome predict labor onset

    Get PDF
    Estimating the time of delivery is of high clinical importance because pre- and postterm deviations are associated with complications for the mother and her offspring. However, current estimations are inaccurate. As pregnancy progresses toward labor, major transitions occur in fetomaternal immune, metabolic, and endocrine systems that culminate in birth. The comprehensive characterization of maternal biology that precedes labor is key to understanding these physiological transitions and identifying predictive biomarkers of delivery. Here, a longitudinal study was conducted in 63 women who went into labor spontaneously. More than 7000 plasma analytes and peripheral immune cell responses were analyzed using untargeted mass spectrometry, aptamer-based proteomic technology, and single-cell mass cytometry in serial blood samples collected during the last 100 days of pregnancy. The high-dimensional dataset was integrated into a multiomic model that predicted the time to spontaneous labor [R = 0.85, 95% confidence interval (CI) [0.79 to 0.89], P = 1.2 × 10−40, N = 53, training set; R = 0.81, 95% CI [0.61 to 0.91], P = 3.9 × 10−7, N = 10, independent test set]. Coordinated alterations in maternal metabolome, proteome, and immunome marked a molecular shift from pregnancy maintenance to prelabor biology 2 to 4 weeks before delivery. A surge in steroid hormone metabolites and interleukin-1 receptor type 4 that preceded labor coincided with a switch from immune activation to regulation of inflammatory responses. Our study lays the groundwork for developing blood-based methods for predicting the day of labor, anchored in mechanisms shared in preterm and term pregnancies

    Evidence of HIV-1 adaptation to host HLA alleles following chimp-to-human transmission

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cytotoxic T-lymphocyte immune response is important in controlling HIV-1 replication in infected humans. In this immune pathway, viral peptides within infected cells are presented to T-lymphocytes by the polymorphic human leukocyte antigens (HLA). HLA alleles exert selective pressure on the peptide regions and immune escape mutations that occur at some of the targeted sites can enable the virus to adapt to the infected host. The pattern of ongoing immune escape and reversion associated with several human HLA alleles has been studied extensively. Such mutations revert upon transmission to a host without the HLA allele because the escape mutation incurs a fitness cost. However, to-date there has been little attempt to study permanent loss of CTL epitopes due to escape mutations without an effect on fitness.</p> <p>Results</p> <p>Here, we set out to determine the extent of adaptation of HIV-1 to three well-characterized HLA alleles during the initial exposure of the virus to the human cytotoxic immune responses following transmission from chimpanzee. We generated a chimpanzee consensus sequence to approximate the virus sequence that was initially transmitted to the human host and used a method based on peptide binding affinity to HLA crystal structures to predict peptides that were potentially targeted by the HLA alleles on this sequence. Next, we used codon-based phylogenetic models to quantify the average selective pressure that acted on these regions during the period immediately following the zoonosis event, corresponding to the branch of the phylogenetic tree leading to the common ancestor of all of the HIV-1 sequences. Evidence for adaptive evolution during this period was observed at regions recognised by HLA A*6801 and A*0201, both of which are common in African populations. No evidence of adaptive evolution was observed at sites targeted by HLA-B*2705, which is a rare allele in African populations.</p> <p>Conclusion</p> <p>Our results suggest that the ancestral HIV-1 virus experienced a period of positive selective pressure due to immune responses associated with HLA alleles that were common in the infected human population. We propose that this resulted in permanent escape from immune responses targeting unconstrained regions of the virus.</p

    Travelling in time with networks: revealing present day hybridization versus ancestral polymorphism between two species of brown algae, Fucus vesiculosus and F. spiralis

    Get PDF
    Background: Hybridization or divergence between sympatric sister species provides a natural laboratory to study speciation processes. The shared polymorphism in sister species may either be ancestral or derive from hybridization, and the accuracy of analytic methods used thus far to derive convincing evidence for the occurrence of present day hybridization is largely debated. Results: Here we propose the application of network analysis to test for the occurrence of present day hybridization between the two species of brown algae Fucus spiralis and F. vesiculosus. Individual-centered networks were analyzed on the basis of microsatellite genotypes from North Africa to the Pacific American coast, through the North Atlantic. Two genetic distances integrating different time steps were used, the Rozenfeld (RD; based on alleles divergence) and the Shared Allele (SAD; based on alleles identity) distances. A diagnostic level of genotype divergence and clustering of individuals from each species was obtained through RD while screening for exchanges through putative hybridization was facilitated using SAD. Intermediate individuals linking both clusters on the RD network were those sampled at the limits of the sympatric zone in Northwest Iberia. Conclusion: These results suggesting rare hybridization were confirmed by simulation of hybrids and F2 with directed backcrosses. Comparison with the Bayesian method STRUCTURE confirmed the usefulness of both approaches and emphasized the reliability of network analysis to unravel and study hybridization

    Phylodynamics of HIV-1 from a Phase III AIDS Vaccine Trial in Bangkok, Thailand

    Get PDF
    In 2003, a phase III placebo-controlled trial (VAX003) was completed in Bangkok, Thailand. Of the 2,546 individuals enrolled in the trial based on high risk for infection through injection drug use (IDU), we obtained clinical samples and HIV-1 sequence data (envelope glycoprotein gene gp120) from 215 individuals who became infected during the trial. Here, we used these data in combination with other publicly available gp120 sequences to perform a molecular surveillance and phylodynamic analysis of HIV-1 in Thailand.Phylogenetic and population genetic estimators were used to assess HIV-1 gp120 diversity as a function of vaccination treatment, viral load (VL) and CD4(+) counts, to identify transmission clusters and to investigate the timescale and demographics of HIV-1 in Thailand. Three HIV-1 subtypes were identified: CRF01_AE (85% of the infections), subtype B (13%) and CRF15_AE (2%). The Bangkok IDU cohort showed more gp120 diversity than other Asian IDU cohorts and similar diversity to that observed in sexually infected individuals. Moreover, significant differences (P<0.02) in genetic diversity were observed in CRF01_AE IDU with different VL and CD4(+) counts. No phylogenetic structure was detected regarding any of the epidemiological and clinical factors tested, although high proportions (35% to 50%) of early infections fell into clusters, which suggests that transmission chains associated with acute infection play a key role on HIV-1 spread among IDU. CRF01_AE was estimated to have emerged in Thailand in 1984.5 (1983-1986), 3-6 years before the first recognition of symptomatic patients (1989). The relative genetic diversity of the HIV-1 population has remained high despite decreasing prevalence rates since the mid 1990s.Our study and recent epidemiological reports indicate that HIV-1 is still a major threat in Thailand and suggest that HIV awareness and prevention needs to be strengthened to avoid AIDS resurgence

    Colonization history of the western corn rootworm (Diabrotica virgifera virgifera) in North America: insights from random forest ABC using microsatellite data

    Get PDF
    First described from western Kansas, USA, the western corn rootworm, Diabrotica virgifera virgifera, is one of the worst pests of maize. The species is generally thought to be of Mexican origin and to have incidentally followed the expansion of maize cultivation into North America thousands of years ago. However, this hypothesis has never been investigated formally. In this study, the genetic variability of samples collected throughout North America was analysed at 13 microsatellite marker loci to explore precisely the population genetic structure and colonization history of D. v. virgifera. In particular, we used up-to-date approximate Bayesian computation methods based on random forest algorithms to test a Mexican versus a central-USA origin of the species, and to compare various possible timings of colonization. This analysis provided strong evidence that the origin of D. v. virgifera was southern (Mexico, or even further south). Surprisingly, we also found that the expansion of the species north of its origin was recent—probably not before 1100 years ago—thus indicating it was not directly associated with the early history of maize expansion out of Mexico, a far more ancient event

    Intra- and Inter-clade Cross-reactivity by HIV-1 Gag Specific T-Cells Reveals Exclusive and Commonly Targeted Regions: Implications for Current Vaccine Trials

    Get PDF
    The genetic diversity of HIV-1 across the globe is a major challenge for developing an HIV vaccine. To facilitate immunogen design, it is important to characterize clusters of commonly targeted T-cell epitopes across different HIV clades. To address this, we examined 39 HIV-1 clade C infected individuals for IFN-γ Gag-specific T-cell responses using five sets of overlapping peptides, two sets matching clade C vaccine candidates derived from strains from South Africa and China, and three peptide sets corresponding to consensus clades A, B, and D sequences. The magnitude and breadth of T-cell responses against the two clade C peptide sets did not differ, however clade C peptides were preferentially recognized compared to the other peptide sets. A total of 84 peptides were recognized, of which 19 were exclusively from clade C, 8 exclusively from clade B, one peptide each from A and D and 17 were commonly recognized by clade A, B, C and D. The entropy of the exclusively recognized peptides was significantly higher than that of commonly recognized peptides (p = 0.0128) and the median peptide processing scores were significantly higher for the peptide variants recognized versus those not recognized (p = 0.0001). Consistent with these results, the predicted Major Histocompatibility Complex Class I IC50 values were significantly lower for the recognized peptide variants compared to those not recognized in the ELISPOT assay (p<0.0001), suggesting that peptide variation between clades, resulting in lack of cross-clade recognition, has been shaped by host immune selection pressure. Overall, our study shows that clade C infected individuals recognize clade C peptides with greater frequency and higher magnitude than other clades, and that a selection of highly conserved epitope regions within Gag are commonly recognized and give rise to cross-clade reactivities
    corecore