947 research outputs found

    Access to Stellar Population Models in the Virtual Observatory

    Full text link
    A great effort is being made by the international Virtual Observatory community to build tools ready to be used by scientists. Presently, providing access to theoretical spectra in general, and synthetic spectra of galaxies in particular, is a matter of current interest in the Virtual Observatory. Several ways of accessing such spectra are available. We present two of them for accessing PEGASE.HR evolutionary synthesis models: HTTP-access to a limited number of parameters using Simple Spectral Access Protocol (SSAP), and full-featured WEB-service based access using Common Execution Architecture (CEA).Comment: 2 pages, 1 figure, to appear in the proceedings of IAU Symposium 241 (Stellar Populations as Building Blocks of Galaxies

    SDSSJ150634.27+013331.6: the second compact elliptical galaxy in the NGC5846 group

    Full text link
    We report the discovery of the second compact elliptical (cE) galaxy SDSSJ150634.27+013331.6 in the nearby NGC5846 group by the Virtual Observatory (VO) workflow . This object (M_B = -15.98 mag, R_e = 0.24 kpc) becomes the fifth cE where the spatially-resolved kinematics and stellar populations can be obtained. We used archival HST WFPC2 images to demonstrate that its light profile has a two-component structure, and integrated photometry from GALEX, SDSS, UKIDSS, and Spitzer to build the multi-wavelength SED to constraint the star formation history (SFH). We observed this galaxy with the PMAS IFU spectrograph at the Calar-Alto 3.5m telescope and obtained two-dimensional maps of its kinematics and stellar population properties using the full-spectral fitting technique. Its structural, dynamical and stellar population properties suggest that it had a massive progenitor heavily tidally stripped by NGC5846.Comment: 5 pages, 4 figure, 1 table. Accepted to MNRAS Letter

    Analytical approximations of K-corrections in optical and near-infrared bands

    Full text link
    To compare photometric properties of galaxies at different redshifts, the fluxes need to be corrected for the changes of effective rest-frame wavelengths of filter bandpasses, called K-corrections. Usual approaches to compute them are based on the template fitting of observed spectral energy distributions (SED) and, thus, require multi-colour photometry. Here, we demonstrate that, in cases of widely used optical and near-infrared filters, K-corrections can be precisely approximated as two-dimensional low-order polynomials of only two parameters: redshift and one observed colour. With this minimalist approach, we present the polynomial fitting functions for K-corrections in SDSS ugriz, UKIRT WFCAM YJHK, Johnson-Cousins UBVR_cI_c, and 2MASS JHK_s bands for galaxies at redshifts Z<0.5 based on empirically-computed values obtained by fitting combined optical-NIR SEDs of a set of 10^5 galaxies constructed from SDSS DR7 and UKIDSS DR5 photometry using the Virtual Observatory. For luminous red galaxies we provide K-corrections as functions of their redshifts only. In two filters, g and r, we validate our solutions by computing K-corrections directly from SDSS DR7 spectra. We also present a K-corrections calculator, a web-based service for computing K-corrections on-line.Comment: 13 pages, 7 figures, 25 tables. Accepted for publication in MNRAS. This version contains low-resolution figures. The "K-corrections calculator" service is available at http://kcor.sai.msu.ru

    Dynamical versus Stellar Masses of Ultracompact Dwarf Galaxies in the Fornax Cluster

    Full text link
    The origin of ultracompact dwarf (UCD) galaxies, compact extragalactic stellar systems, is still a puzzle for present galaxy formation models. We present the comprehensive analysis of high resolution multi-object spectroscopic data for a sample of 24 Fornax cluster UCDs obtained with VLT FLAMES. It comprises previously published data for 19 objects (Mieske et al. 2008) which we re-analysed, including 13 with available HST photometric data. Using Virtual Observatory technologies we found archival HST images for two more UCDs and then determined their structural properties. For all objects we derived internal velocity dispersions, stellar population parameters, and stellar mass-to-light ratios (M/L)* by fitting individual simple stellar population (SSP) synthetic spectra convolved with a Gaussian against the observed spectra using the NBursts full spectral fitting technique. For 14 objects we estimated dynamical masses suggesting no dark matter (DM) in 12 of them and no more than 40 per cent DM mass fraction in the remaining two, in contrast to findings for several UCDs in the Virgo cluster. Some Fornax UCDs even have too high values of (M/L)* estimated using the Kroupa stellar initial mass function (IMF) resulting in negative formally computed DM mass fractions. The objects with too high (M/L)* ratios compared to the dynamical ones have relatively short dynamical relaxation timescales, close to the Hubble time or below. We therefore suggest that their lower dynamical ratios (M/L)dyn are caused by low-mass star depletion due to dynamical evolution. Overall, the observed UCD characteristics suggest at least two formation channels: tidal threshing of nucleated dwarf galaxies for massive UCDs (~10^8 M_sun), and a classical scenario of red globular cluster formation for lower-mass UCDs (< 10^7 M_sun).Comment: Accepted for publication in MNRAS; 13 pages, 9 figures, 2 table

    A universal ultraviolet-optical colour-colour-magnitude relation of galaxies

    Full text link
    Although the optical colour-magnitude diagram of galaxies allows one to select red sequence objects, neither can it be used for galaxy classification without additional observational data such as spectra or high-resolution images, nor to identify blue galaxies at unknown redshifts. We show that adding the near ultraviolet colour to the optical CMD reveals a tight relation in the three-dimensional colour-colour-magnitude space smoothly continuing from the "blue cloud" to the "red sequence". We found that 98 per cent of 225,000 low-redshift (Z<0.27) galaxies follow a smooth surface g-r=F(M,NUV-r) with a standard deviation of 0.03-0.07 mag making it the tightest known galaxy photometric relation. There is a strong correlation between morphological types and integrated NUV-r colours. Rare galaxy classes such as E+A or tidally stripped systems become outliers that occupy distinct regions in the 3D parameter space. Using stellar population models for galaxies with different SFHs, we show that (a) the (NUV-r, g-r) distribution is formed by objects having constant and exponentially declining SFR with different characteristic timescales; (b) colour evolution for exponentially declining models goes along the relation suggesting its weak evolution up-to a redshift of 0.9; (c) galaxies with truncated SFHs have very short transition phase offset from the relation thus explaining the rareness of E+A galaxies. This relation can be used as a powerful galaxy classification tool when morphology remains unresolved. Its mathematical consequence is the photometric redshift estimates from 3 broad-band photometric points. This approach works better than most existing photometric redshift techniques applied to multi-colour datasets. Therefore, the relation can be used as an efficient selection technique for galaxies at intermediate redshifts (0.3<Z<0.8) using optical imaging surveys.Comment: 15 pages, 10 figures, accepted to MNRAS. This is an updated version that addresses referee's remarks. All relations have been recomputed using Petrosian magnitudes. The best-fitting relations in the electronic form are available at the project web-page: http://specphot.sai.msu.ru/galaxies

    Virtual Observatory based identification of AX J194939+2631 as a new cataclysmic variable

    Full text link
    We report the discovery of a new cataclysmic variable (CV) among unidentified objects from the ASCA Galactic Plane Survey made using the Virtual Observatory data mining. First, we identified AX J194939+2631 with IPHAS J194938.39+263149.2, the only prominent H-alpha emitter among 400 sources in a 1 arcmin field of the IPHAS survey, then secured as a single faint X-ray source found in an archival Chandra dataset. Spectroscopic follow-up with the 3.5-m Calar Alto telescope confirmed its classification as a CV, possibly of magnetic nature. Our analysis suggests that AX J194939+2631 is a medium distance system (d ~ 0.6 kpc) containing a late-K or early-M type dwarf as a secondary component and a partially disrupted accretion disc revealed by the double-peaked H-alpha line. However, additional deep observations are needed to confirm our tentative classification of this object as an intermediate polar.Comment: 5 pages, 5 figures, 2 tables, accepted to Astronomy and Astrophysic

    The chemical composition of Ultracompact Dwarf Galaxies in the Virgo and Fornax Clusters

    Full text link
    We present spectroscopic observations of ultra compact dwarf (UCD) galaxies in the Fornax and Virgo Clusters made to measure and compare their stellar populations. The spectra were obtained on the Gemini-North (Virgo) and Gemini-South (Fornax) Telescopes using the respective Gemini Multi-Object Spectrographs. We estimated the ages, metallicities and abundances of the objects from mea- surements of Lick line-strength indices in the spectra; we also estimated the ages and metallicities independently using a direct spectral fitting technique. Both methods re- vealed that the UCDs are old (mean age 10.8 \pm 0.7 Gyr) and (generally) metal-rich (mean [Fe/H] = -0.8 \pm 0.1). The alpha-element abundances of the objects measured from the Lick indices are super-Solar. We used these measurements to test the hypothesis that UCDs are formed by the tidal disruption of present-day nucleated dwarf elliptical galaxies. The data are not consistent with this hypothesis because both the ages and abundances are significantly higher than those of observed dwarf galaxy nuclei (this does not exclude disruption of an earlier generation of dwarf galaxies). They are more consistent with the properties of globular star clusters, although at higher mean metallicity. The UCDs display a very wide range of metallicity (-1.7 <[Fe/H]< 0.0), spanning the full range of both globular clusters and dwarf galaxy nuclei. We confirm previous reports that most UCDs have high metalliticities for their luminosities, lying significantly above the canonical metallicitiy-luminosity relation followed by early-type galaxies. In contrast to previous work we find that there is no significant difference in either the mean ages or the mean metallicities of the Virgo and Fornax UCD populations.Comment: 15 pages (including references and appendix), 8 figures (including appendix
    corecore