Abstract

To compare photometric properties of galaxies at different redshifts, the fluxes need to be corrected for the changes of effective rest-frame wavelengths of filter bandpasses, called K-corrections. Usual approaches to compute them are based on the template fitting of observed spectral energy distributions (SED) and, thus, require multi-colour photometry. Here, we demonstrate that, in cases of widely used optical and near-infrared filters, K-corrections can be precisely approximated as two-dimensional low-order polynomials of only two parameters: redshift and one observed colour. With this minimalist approach, we present the polynomial fitting functions for K-corrections in SDSS ugriz, UKIRT WFCAM YJHK, Johnson-Cousins UBVR_cI_c, and 2MASS JHK_s bands for galaxies at redshifts Z<0.5 based on empirically-computed values obtained by fitting combined optical-NIR SEDs of a set of 10^5 galaxies constructed from SDSS DR7 and UKIDSS DR5 photometry using the Virtual Observatory. For luminous red galaxies we provide K-corrections as functions of their redshifts only. In two filters, g and r, we validate our solutions by computing K-corrections directly from SDSS DR7 spectra. We also present a K-corrections calculator, a web-based service for computing K-corrections on-line.Comment: 13 pages, 7 figures, 25 tables. Accepted for publication in MNRAS. This version contains low-resolution figures. The "K-corrections calculator" service is available at http://kcor.sai.msu.ru

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2021
    Last time updated on 21/12/2020
    Last time updated on 04/12/2020
    Last time updated on 03/01/2020