236 research outputs found

    Revisiting the Diego Blood Group System in Amerindians: Evidence for Gene-Culture Comigration

    No full text
    International audienceSix decades ago the DI*A allele of the Diego blood group system was instrumental in proving Native American populations originated from Siberia. Since then, it has received scant attention. The present study was undertaken to reappraise distribution of the DI*A allele in 144 Native American populations based on current knowledge. Using analysis of variance tests, frequency distribution was studied according to geographical, environmental, and cultural parameters. Frequencies were highest in Amazonian populations. In contrast, DI*A was undetectable in subarctic, Fuegian, Panamanian, Chaco and Yanomama populations. Closer study revealed a correlation that this unequal distribution was correlated with language, suggesting that linguistic divergence was a driving force in the expansion of DI*A among Native Americans. The absence of DI*A in circumpolar Eskimo-Aleut and Na-Dene speakers was consistent with a late migratory event confined to North America. Distribution of DI*A in subtropical areas indicated that gene and culture exchanges were more intense within than between ecozones. Bolstering the utility of classical genetic markers in biological anthropology, the present study of the expansion of Diego blood group genetic polymorphism in Native Americans shows strong evidence of gene-culture comigration

    Paternal RHD zygosity determination in Tunisians: evaluation of three molecular tests

    No full text
    International audienceBackground. The choice of a molecular test for first intention determination of paternal RHD zygosity, before entering into invasive diagnostics, is important for the management of pregnancies at risk of haemolytic disease of the foetus and newborn related to anti-RhD. Materials and methods. RHD zygosity was evaluated in 370 RH:1 Tunisian donors by polymerase chain reaction-sequence-specific polymorphism (PCR-SSP) analysis and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) amplification of hybrid Rhesus box and by real time quantitative polymerase chain reaction (RQ-PCR) specific for RHD exon 5. To evaluate the accuracy of molecular tests in the cases of discordant results, the ten exons of RHD and Rhesus boxes were amplified by PCR and sequenced. Results. Molecular investigations revealed that our 370 donors comprise 193 dizygous and 145 hemizygous individuals and 32 subjects whose zygosity remains unknown. Positive predictive values were higher than 99% for all the methods, reaching 100% for RQ-PCR. Negative predictive values were 83.24%, 87.27% and 98% for PCR-SSP, PCR-RFLP and RQ-PCR respectively. This study also revealed 19 novel Rhesus box polymorphisms and three novel RHD alleles: RHD(Trp185Stop), RHD(Ala176Thr) and RHD(Ile342Ile). Discussion. RQ-PCR is the most convenient method for first intention determination of paternal RHD zygosity in Tunisians. However, taking into account positive and negative predictive values, PCR-RFLP could be an alternative despite the heterogeneity of Rhesus boxes and the complexity of RHD

    Restituer les règles de recrutement dans une sépulture collective : les marqueurs génétiques à l’épreuve

    Get PDF
    Au Néolithique de nombreuses communautés d’Europe occidentale rassemblent leurs morts dans des tombes collectives. Mais quel lien unit ces défunts ? La première hypothèse à tester est la potentielle parenté biologique. Le meilleur moyen pour l’approcher actuellement est la génétique. Mais aucune étude à ce jour n’a évalué la pertinence des marqueurs génétiques dans la restitution des règles de recrutement dans une tombe collective qui contient souvent de très nombreuses générations. C’est l’o..

    L’histoire évolutive de Neandertal et Denisova vue par les systèmes des groupes sanguins

    Get PDF
    Malgré une cartographie toujours plus fine des génomes de Néandertal et de Denisova, on sait peu de choses sur les groupes sanguins des globules rouges de ces populations archaïques. Notre objectif est d’identifier le polymorphisme des groupes sanguins néandertaliens et denisoviens afin de retracer la diversité humaine archaïque et actuelle, puis de discuter des aspects sanitaires et des vulnérabilités des populations archaïques. Nous avons analysé les séquences de haute qualité de trois Néan..

    Y-chromosome phylogeographic analysis of the Greek-Cypriot population reveals elements consistent with Neolithic and Bronze Age settlements

    Get PDF
    International audienceBackground: The archeological record indicates that the permanent settlement of Cyprus began with pioneering agriculturalists circa 11,000 years before present, (ca. 11,000 y BP). Subsequent colonization events followed, some recognized regionally. Here, we assess the Y-chromosome structure of Cyprus in context to regional populations and correlate it to phases of prehistoric colonization. Results: Analysis of haplotypes from 574 samples showed that island-wide substructure was barely significant in a spatial analysis of molecular variance (SAMOVA). However, analyses of molecular variance (AMOVA) of haplogroups using 92 binary markers genotyped in 629 Cypriots revealed that the proportion of variance among the districts was irregularly distributed. Principal component analysis (PCA) revealed potential genetic associations of Greek-Cypriots with neighbor populations. Contrasting haplogroups in the PCA were used as surrogates of parental populations. Admixture analyses suggested that the majority of G2a-P15 and R1b-M269 components were contributed by Anatolia and Levant sources, respectively, while Greece Balkans supplied the majority of E-V13 and J2a-M67. Haplotype-based expansion times were at historical levels suggestive of recent demography. Conclusions: Analyses of Cypriot haplogroup data are consistent with two stages of prehistoric settlement. E-V13 and E-M34 are widespread, and PCA suggests sourcing them to the Balkans and Levant/Anatolia, respectively. The persistent pre-Greek component is represented by elements of G2-U5(xL30) haplogroups: U5*, PF3147, and L293. J2b-M205 may contribute also to the pre-Greek strata. The majority of R1b-Z2105 lineages occur in both the westernmost and easternmost districts. Distinctively, sub-haplogroup R1b-M589 occurs only in the east. The absence of R1b-M589 lineages in Crete and the Balkans and the presence in Asia Minor are compatible with Late Bronze Age influences from Anatolia rather than from Mycenaean Greeks

    Clinical relevance of cell-free DNA quantification and qualification during the first month after lung transplantation

    Get PDF
    BackgroundMany studies have reported the relevance of donor-derived cfDNA (dd-cfDNA) after lung transplantation (LTx) to diagnose and monitor acute rejection (AR) or chronic rejection or infection (INF). However, the analysis of cfDNA fragment size has not been studied. The aim of this study was to determine the clinical relevance of dd-cfDNA and cfDNA size profiles in events (AR and INF) during the first month after LTx.MethodsThis prospective, single-center study includes 62 LTx recipients at the Marseille Nord Hospital, France. Total cfDNA quantification was performed by fluorimetry and digital PCR, dd-cfDNA by NGS (AlloSeq cfDNA-CareDX®), and the size profile by BIABooster (Adelis®). A bronchoalveolar lavage and transbronchial biopsies at D30 established the following groups: not-injured and injured graft (AR, INF, or AR+INF).ResultsQuantification of total cfDNA was not correlated with the patient’s status at D30. The percentage of dd-cfDNA was significantly higher for injured graft patients at D30 (p=0.0004). A threshold of 1.72% of dd-cfDNA correctly classified the not-injured graft patients (negative predictive value of 91.4%). Among recipients with dd-cfDNA >1.72%, the quantification of small sizes (80-120bp) >3.70% identified the INF with high performance (specificity and positive predictive value of 100%).ConclusionWith the aim of considering cfDNA as a polyvalent non-invasive biomarker in transplantation, an algorithm combining the quantification of dd-cfDNA and small sizes of DNA may significantly classify the different types of allograft injuries

    Defining KIR and HLA Class I Genotypes at Highest Resolution via High-Throughput Sequencing.

    Get PDF
    The physiological functions of natural killer (NK) cells in human immunity and reproduction depend upon diverse interactions between killer cell immunoglobulin-like receptors (KIRs) and their HLA class I ligands: HLA-A, HLA-B, and HLA-C. The genomic regions containing the KIR and HLA class I genes are unlinked, structurally complex, and highly polymorphic. They are also strongly associated with a wide spectrum of diseases, including infections, autoimmune disorders, cancers, and pregnancy disorders, as well as the efficacy of transplantation and other immunotherapies. To facilitate study of these extraordinary genes, we developed a method that captures, sequences, and analyzes the 13 KIR genes and HLA-A, HLA-B, and HLA-C from genomic DNA. We also devised a bioinformatics pipeline that attributes sequencing reads to specific KIR genes, determines copy number by read depth, and calls high-resolution genotypes for each KIR gene. We validated this method by using DNA from well-characterized cell lines, comparing it to established methods of HLA and KIR genotyping, and determining KIR genotypes from 1000 Genomes sequence data. This identified 116 previously uncharacterized KIR alleles, which were all demonstrated to be authentic by sequencing from source DNA via standard methods. Analysis of just two KIR genes showed that 22% of the 1000 Genomes individuals have a previously uncharacterized allele or a structural variant. The method we describe is suited to the large-scale analyses that are needed for characterizing human populations and defining the precise HLA and KIR factors associated with disease. The methods are applicable to other highly polymorphic genes.This study was supported by U.S. National Institutes of Health grants U01 AI090905, R01 20 GM109030, R01 AI17892 and U19 AI119350. Authors Steven Norberg and Mostafa Ronaghi are 21 employees of Illumina Inc.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Elsevier

    The coming of the Greeks to Provence and Corsica: Y-chromosome models of archaic Greek colonization of the western Mediterranean

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The process of Greek colonization of the central and western Mediterranean during the Archaic and Classical Eras has been understudied from the perspective of population genetics. To investigate the Y chromosomal demography of Greek colonization in the western Mediterranean, Y-chromosome data consisting of 29 YSNPs and 37 YSTRs were compared from 51 subjects from Provence, 58 subjects from Smyrna and 31 subjects whose paternal ancestry derives from Asia Minor Phokaia, the ancestral embarkation port to the 6<sup>th </sup>century BCE Greek colonies of Massalia (Marseilles) and Alalie (Aleria, Corsica).</p> <p>Results</p> <p>19% of the Phokaian and 12% of the Smyrnian representatives were derived for haplogroup E-V13, characteristic of the Greek and Balkan mainland, while 4% of the Provencal, 4.6% of East Corsican and 1.6% of West Corsican samples were derived for E-V13. An admixture analysis estimated that 17% of the Y-chromosomes of Provence may be attributed to Greek colonization. Using the following putative Neolithic Anatolian lineages: J2a-DYS445 = 6, G2a-M406 and J2a1b1-M92, the data predict a 0% Neolithic contribution to Provence from Anatolia. Estimates of colonial Greek vs. indigenous Celto-Ligurian demography predict a maximum of a 10% Greek contribution, suggesting a Greek male elite-dominant input into the Iron Age Provence population.</p> <p>Conclusions</p> <p>Given the origin of viniculture in Provence is ascribed to Massalia, these results suggest that E-V13 may trace the demographic and socio-cultural impact of Greek colonization in Mediterranean Europe, a contribution that appears to be considerably larger than that of a Neolithic pioneer colonization.</p
    corecore