21 research outputs found

    Conceptual Study of Rotary-Wing Microrobotics

    Get PDF
    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics. Two methods for fabricating an angled wing were also attempted with photoresist and CrystalBond™ to create an angle of attack. One particular design consisted of the wing designs mounted on a gear which are driven by MEMS actuators. MEMS comb drive actuators were analyzed, simulated and tested as a feasible drive system. The comb drive resonators were also designed orthogonally which successfully rotated a gear without wings. With wings attached to the gear, orthogonal MEMS thermal actuators demonstrated wing rotation with limited success. Multi-disciplinary theoretical expressions were formulated to account for necessary mechanical force, allowable mass for lift, and electrical power requirements. The robot design did not achieve flight, but the small pieces presented in this research with minor modifications are promising for a potential complete robot design under 1 cm2 wingspan. The complete robot design would work best in a symmetrical quad-rotor configuration for simpler maneuverability and control. The military’s method to gather surveillance, reconnaissance and intelligence could be transformed given a MEMS rotary-wing robot’s diminutive size and multi-role capabilities

    Three-dimensional field-effect transistors with top-down and bottom-up nanowire-array channels

    Get PDF
    This dissertation research effort explores new transistor topologies using three-dimensional nanowire (NW)-array channels formed by both bottom-up and top-down synthesis. The bottom-up NW research centers on the Au-catalyzed planar GaAs NW assembly discovered at the University of Illinois Urbana-Champaign (UIUC). The top-down NW research approach involves plasma etching of an emerging wide-bandgap material, Gallium Oxide (Ga2O3), to make arrays of NW channels (or fins) for high-power electronics. Bottom-up AlGaAs/GaAs heterostructure core-shell planar NWs are demonstrated on a wafer scale with excellent yield. Their placement is determined by lithographically patterning an array of Au seeds on semi-insulating GaAs substrate. The GaAs NWs assemble by lateral epitaxy via a vapor-liquid-solid mechanism and align in parallel arrays as a result of the (100) GaAs crystal plane orientation; then, a thin-film AlGaAs layer conforms to the GaAs NWs to form AlGaAs/GaAs NW high-electron mobility channels. Radio frequency (RF) transistors are fabricated and show excellent dc and high-frequency performance. An fmax > 75 GHz with 104 is measured which is superior compared to carbon-based nanoelectronics and “spin-on III-V NWs”. A comprehensive small-signal model is used to extract the contributing and limiting factors to the RF performance of AlGaAs/GaAs NW-array transistors and predict future performance. Finally, a process is developed to show that III-V NWs on sacrificial epitaxial templates can be transferred to arbitrary substrates. Top-down NWs were formed from Sn-doped Ga2O3 homoepitaxially grown on semi-insulating beta-phase Ga2O3 substrates by metal-organic vapor phase epitaxy. First, conventional planar transistors were fabricated from a sample set to characterize and understand the electrical performance as a function of Sn-doping and epitaxial channel thickness. Second, the high-critical field strength was evaluated to highlight the benefit of using Ga2O3 as a disruptive technology to GaN and SiC. Lastly, the planar transistor results feed into a design for a top-down NW-array transistor. The Ga2O3 NW-arrays were formed by BCl3 plasma etching. A new wrap-gate transistor demonstrates normally-off (enhancement-mode) operation with a high breakdown voltage exceeding 600 V which is superior to any transistor using a 3D channel

    Monocrystalline Si/β\beta-Ga2_2O3_3 p-n heterojunction diodes fabricated via grafting

    Full text link
    The β\beta-Ga2_2O3_3 has exceptional electronic properties with vast potential in power and RF electronics. Despite the excellent demonstrations of high-performance unipolar devices, the lack of p-type doping in β\beta-Ga2_2O3_3 has hindered the development of Ga2_2O3_3-based bipolar devices. The approach of p-n diodes formed by polycrystalline p-type oxides with n-type β\beta-Ga2_2O3_3 can face severe challenges in further advancing the β\beta-Ga2_2O3_3 bipolar devices due to their unfavorable band alignment and the poor p-type oxide crystal quality. In this work, we applied the semiconductor grafting approach to fabricate monocrystalline Si/β\beta-Ga2_2O3_3 p-n diodes for the first time. With enhanced concentration of oxygen atoms at the interface of Si/β\beta-Ga2_2O3_3, double side surface passivation was achieved for both Si and β\beta-Ga2_2O3_3 with an interface Dit value of 1-3 x 1012 /cm2 eV. A Si/β\beta-Ga2_2O3_3 p-n diode array with high fabrication yield was demonstrated along with a diode rectification of 1.3 x 107 at +/- 2 V, a diode ideality factor of 1.13 and avalanche reverse breakdown characteristics. The diodes C-V shows frequency dispersion-free characteristics from 10 kHz to 2 MHz. Our work has set the foundation toward future development of β\beta-Ga2_2O3_3-based transistors.Comment: 32 pages, 10 figures. The preliminary data were presented as a poster in the 5th US Gallium Oxide Workshop, Washington, DC. August 07-10, 202
    corecore