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Sn-doped gallium oxide (Ga2O3) wrap-gate fin-array field-effect transistors (finFETs) were formed

by top-down BCl3 plasma etching on a native semi-insulating Mg-doped (100) b-Ga2O3 substrate.

The fin channels have a triangular cross-section and are approximately 300 nm wide and 200 nm

tall. FinFETs, with 20 nm Al2O3 gate dielectric and �2 lm wrap-gate, demonstrate normally-off

operation with a threshold voltage between 0 and þ1 V during high-voltage operation. The ION/
IOFF ratio is greater than 105 and is mainly limited by high on-resistance that can be significantly

improved. At VG¼ 0, a finFET with 21 lm gate-drain spacing achieved a three-terminal breakdown

voltage exceeding 600 V without a field-plate. VC 2016 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4967931]

Gallium oxide (Ga2O3) is emerging as a potential dis-

ruptive electronic material for high-voltage electronics appli-

cations. The excitement of this material is due to its (1)

ultra-wide bandgap of �4.8 eV with �8 MV/cm theoretical

critical field strength,1 (2) up to four-inch native substrate

availability and capability of melt-growth synthesis,2 and

(3) a wide range of n-type doping achievable by halide

vapor phase epitaxy (HVPE),3 molecular beam epitaxy

(MBE),4 low-pressure chemical vapor deposition

(LPCVD),5 metal-organic chemical vapor deposition

(MOCVD),6 and metal-organic vapor phase epitaxy

(MOVPE).7,8 The b-phase Ga2O3 unit crystal has a mono-

clinic structure and is reported as the most thermally stable

and conducive for the single-crystal homoepitaxial

growth.9,10 For heterogeneous integration, a notable cleav-

age plane is located along the (100) crystal plane, which has

incited nanomembrane research for integration with arbi-

trary substrates and two-dimensional semiconductors.11–13

The first transistor devices by homoepitaxial Ga2O3 were

demonstrated with a Sn-doped Ga2O3 channel grown by MBE

on (010) semi-insulating b-Ga2O3 substrates.1,14 Metal-oxide-

semiconductor field-effect transistors (MOSFETs) followed

later with a Si-doped channel and ohmic contacts

by implantation with breakdown exceeding 750-V with a field-

plate.15,16 Most recently, Sn-doped Ga2O3 MOSFETs homoepi-

taxially grown by MOVPE on (100) semi-insulating b-Ga2O3

achieved a record-high 3.8 MV/cm critical field strength sur-

passing GaN and SiC bulk theoretical field strengths.17

For power electronics applications, a normally-off tran-

sistor is preferred for safe high-voltage operation and to

mitigate off-state power dissipation. To achieve a high-

current density, Ga2O3 MOSFETs require high doping con-

centration resulting in a negative threshold voltage (VTH). To

shift toward positive VTH, non-planar fin-shaped channels

offer enhanced electrostatic control of the channel by deplet-

ing it from the side walls without sacrificing doping.

Achieving dense, parallel arrays of fin channels is most easily

achieved by top-down plasma etching though reports of fin

channels formed by metal-catalyzed wet-etching18 and self-

assembly19 are promising to avoid plasma etch damage.

GaN-based fin-channel field-effect transistors (finFETs)

have been reported with Si-doped GaN junctionless and

high-electron mobility AlGaN/GaN heterostructure channels

where the gate wraps around fins with enhanced electrostat-

ics to nearly or fully deplete the channel.20–22 However, the

main drawbacks for GaN are cost and the availability of

native substrates for low-defect density homoepitaxial

growth. In this letter, we present a finFET with arrays of par-

allel Sn-doped Ga2O3 fin channels formed by top-down

plasma etching to achieve normally-off operation on a native

(100) semi-insulating b-Ga2O3 substrate. The results show

the feasibility of wrap-gate architecture to shift the VTH to

positive values while maintaining volume current densities

for consideration in future high-voltage device design.

Fin-array field-effect transistors (finFET) devices were

fabricated from a 300-nm Sn-doped Ga2O3 channel grown

homoepitaxially by MOVPE on a 100-mm2 Mg-doped semi-

insulating (100) b-Ga2O3 substrate.7,8,23 First, arrays of

�300-nm wide fin channels with a �900-nm pitch were

formed by electron beam lithography followed by 150-nm Cr
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metal evaporation as the hard mask. A second 200-nm Cr

hard mask was superimposed on the fin mask by projection

lithography to create bulk mesa contacts for source and drain

electrodes. Both Cr layers were etched by inductively cou-

pled plasma (ICP) etching using BCl3 chemistry.24 The etch

conditions were 120 W reactive ion etching (RIE) power and

300 W coil power with 20 sccm BCl3 and 16 mTorr chamber

pressure. The etch selectivity of Ga2O3:Cr was approximately

�2:1. To sufficiently remove the entire 300-nm channel

between fins, an over-etch was required, which completely

etched the fin Cr mask resulting in triangular-shaped fins.

Residual Cr on the source and drain mesas was removed by

commercially available Cr wet-etchant. Ohmic contacts con-

sisted of Ti/Al/Ni/Au (20/100/50/50 nm) rapidly annealed for

1-min at 470 �C in nitrogen. A 20-nm Al2O3 gate dielectric

was deposited by atomic layer deposition (ALD) at 250 �C
and patterned by fluorine-based RIE to allow for Ni/Au (20/

480 nm) interconnects and �2 lm long optical gate metal

evaporation. Finally, a second 20-nm ALD Al2O3 layer was

deposited and patterned on the sample to passivate the etched

Ga2O3 surfaces between interconnects. The fabrication pro-

cess is illustrated in Fig. 1(a).

The finFET has a centered two-finger gate layout with

each gate finger wrapping along 48 fins. The total source

to drain distance (LSD) is �4-lm, and the fin-array spans

approximately �3-lm of this source-drain distance. A tilted

SEM image of the fin channels with wrap-gate and bulk-like

ohmic contacts is shown in Fig. 1(b). The sidewall morphology

appears relatively smooth as previously observed using high-

power ICP plasma etching with BCl3.24 A representative

cross-sectional SEM image of three fins is shown in Fig. 2(a).

The darker contrast observed in the fin compared to the sub-

strate is indicative of the Sn-doped channel and adequate elec-

trical isolation between fins. Fig. 2(b) depicts that the fins are

approximately �300 nm at the base with tapered sidewalls

joining at �200 nm thickness. The 20-nm Al2O3 gate dielectric

and Ni/Au gate metal conform to the fin on all sides.

The mobility and doping concentration of the fins were

measured from on-wafer Van der Pauw (VdP) test structures

and device C-V measurements. It is widely reported that ion-

ized donor concentration, ND, can vary significantly from the

chemical Sn-doping concentration.8,17 The sheet resistance

(RSH) and electron mobility (l) were measured on a VdP

structure near the reported device as �40 kX/sq and �24 cm2/

Vs, respectively. We observed the larger geometry of the Cr

mask used for the VdP mesa etched slower compared to the

Cr fin-array mask; therefore, the VdP mesa was protected

during the fin-array definition process. A forward and reverse

C-V measurement of the finFET is shown in Fig. 3 indicating

�0.8 V of hysteresis, which has been previously reported

as mobile border traps in accumulation.25 In the inset, an

ND� 2.3� 1017 cm�3 was extracted from the linear region

of 1/C2 as a function of VGS. The area was estimated as

LGWfinNfin where Wfin is �200 nm after considering a �70 nm

backside depletion width and using a 3:2 width-to-height tri-

angular fin cross-section. Finally, the flat-band capacitance,

CFB, can be calculated by the measured oxide capacitance

(Cox� 225 fF) in series with the semiconductor capacitance

(CS).26 The corresponding forward and reverse sweep flat-

band voltage, VFB, is 1.3 V and 2.1 V, respectively.

In the absence of accurate models for Ga2O3, one-

dimensional analytical expressions were used to estimate the

depletion widths (Wd) on the two sides and bottom facet of

the Sn-doped fins. The partial depletion width of the sides in

the ungated region can be estimated by the built-in energy

potential (Vbi) using the energy band lineup at the Al2O3/

Ga2O3 interface20

EAl2O3
G ¼ EAl2O3

VBM þ DEC þ EGa203

C
� EF

� �
þ Vbi; (1)

where EG, DEC, and EVBM are the bandgap, conduction band

offset, and valence band maximum with respect to the Ga2O3

Fermi level energy (EF), respectively. Vbi(ug) represents band-

bending in the ungated Ga2O3 due to the presence of interface

traps. Kamimura et al. reported on the Al2O3/Ga2O3 interface

with EG� 6.8 eV, DEC� 1.5–1.7 eV,25,27 and EVBM� 3.8 eV25

using XPS measurements. For ND� 2.3� 1017 cm�3, the semi-

conductor EC�EF energy difference can be expressed as

FIG. 1. (a) Fabrication process for Ga2O3 finFETs and (b) the tilted false-colored SEM image of a LSD¼ 4 lm finFET depicting the geometry of Ga2O3 fin

channels and contacts.
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�Vtln
ND

NC

� �
; (2)

where Vt and NC are the thermal voltage (�26 mV at 300 K)

and effective conduction band density of states for Ga2O3.
28

This analysis shows EC�EF is �73 meV and leaves a non-

negligible Vbi(ug)� 1.4 eV, which may be related to interface

traps and/or pinning, which is neither well-understood nor

reported.

A similar study of GaN finFETs deduced a

Vbi� 0.74 eV in the ungated region and was explained by

Al2O3/GaN interfacial chemistry by XPS.20,29 Furthermore,

in the gated region, the band-bending can increase an addi-

tional �1.15 eV due to the difference in metal work func-

tions of Ni (Am¼ 5.15 eV) and Ga2O3 (AS¼ vsþEC�EF),20

where vs is the electron affinity of Ga2O3 (�3.5 to 4.0 V).27,30

However, this does not consider trap-assisted tunneling for

thin Al2O3 gate oxide,27 and it remains unclear how the

Vbi(ug) compensates for the band-bending normally induced

by a gate contact without thorough XPS characterization of

our particular interface. For a simple case, however, where

both energy barriers are combined in the gated region, the

Vbi(g) is �2.5 V, which is reasonably close to the measured

reverse sweep VFB. The maximum depletion width, Wd, for

each region is calculated by the following equation:

Wd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eoeSVbi ug;gð Þ

qND

s
; (3)

where eo and eS are the permittivity of free space and Ga2O3

dielectric constant, respectively. This yields Wd� 83 nm and

�110 nm in the ungated and gated regions, respectively. A

backside depletion width from the semi-insulating substrate

is found to be �70 nm assuming a mid-gap interface trap

density of �2� 1017 cm�3.17,31 Therefore, we estimate an

undepleted fin with approximately �26 nm (base) �� 17 nm

(height) in the ungated region contributes to the volume con-

duction mechanism in the finFET. In contrast, the depletion

from the sides and substrate fully deplete the fin dimensions

in the gated region to realize the normally-off operation. It

should be noted that once VGS>VFB, the finFET is operating

in accumulation similar to non-planar normally-off junction-

less GaN finFETs.20,32

Fig. 4(a) shows the family of ID-VD curves from

VGS¼þ4 V to 0 V. At VGS¼þ4 V, the on-current (ION)

reaches �3.5 lA. An upper bound on expected current in the

partially depleted fin-arrays can be approximated by the

open channel current density (Jn) where VDS< jVGS-VTHj
using the drift current equation

Jn ¼ qlNDECH; (4)

where ECH¼VDS/LCH is the potential across the source-drain

channel (LCH). Using the partially depleted fin-array cross-

sectional area at VDS¼ 2 V and LCH¼ 3 lm, Jn¼ 5.9 kA/cm2

or ID� 1.3 lA, which is close to the measured value in Fig.

4(a). For comparison, this simple analysis is also in agreement

at VDS¼ 1 V (IDS¼ 0.55 mA) for the planar Sn-doped Ga2O3

MOSFET reported by Green et al. using the surface and sub-

strate depletion widths with the reported ND and Ti/Au gate.17

The gate width, WG¼WfinNfin, is �19 lm corresponding to an

ION� 0.18 lA/lm. The low ION is a main limitation of the

fin-array topology reported here, but can be drastically

improved in the future with higher-mobility materials and on-

resistance optimization. For this device, the gate swing was

limited by the conduction band offset of Al2O3/Ga2O3, which

can be improved with, for example, ALD SiO2.33 The gate

leakage characteristics are shown in Fig. 4(b) and indicate

ultra-low gate leakage near 10�12 Amps before an onset of

trap-assisted tunneling at forward bias appears.27

Fig. 4(c) shows the ID-VG characteristics at VDS¼ 10 V.

Despite ION limitations, the finFET has >105 ION/IOFF ratio.

The device reaches an off-state approaching 10�12 Amps

between 0 and þ1 VGS indicating enhancement-mode opera-

tion. To rule out the parasitic conduction in the substrate

FIG. 3. Forward and reverse C-VGS sweep of the finFET indicating the cal-

culated flatband and oxide capacitance; and, (inset) C�2-VGS characteristics

to extract carrier concentration.

FIG. 2. (a) The cross-sectional SEM image of three Ga2O3 fins and (b) a

high magnification SEM image of one Ga2O3 fin channel with associated

dimensions.
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between fins, an identical MOSFET with the epitaxial chan-

nel etched away was fabricated and shows minimal modula-

tion of the remaining etched SI substrate. We attribute this

parasitic modulation to uncompensated free carriers in the

substrate being accumulated at the Al2O3/SI-Ga2O3 interface.

The forward and reverse sweeps reveal trapping effects that

may be a combination of the unoptimized Al2O3/Ga2O3 inter-

face and density of interface traps (Dit) caused by the plasma

etching of the fin side walls. Despite no surface treatment

optimization, the subthreshold slope (SS) is 158 mV/dec,

which is superior to previously reported Ga2O3 MOSFETs.

The Dit can be estimated by the shift in forward and reverse

VFB from Fig. 3 using the following expression:

Dit ¼
CoxDVFB

qEGa2O3

G

; (5)

which is approximately �3.9� 1011 cm�2 eV�1 where Cox

� 3.8 fF/lm2. The area for Cox is calculated using the mea-

sured Cox, 20 nm thickness and a gate dielectric constant of

8.5; though, estimating the area using the sum of the fin side

facets multiplied by LG gives nearly the same value. This Dit

value is similar to previously reported Al2O3/Ga2O3 and

SiO2/Ga2O3 MOS capacitors on (-201) nþ b-Ga2O3 substrates

with Dit< 1.0� 1012 cm�2 eV�1 after surface treatment opti-

mization.33,34 The effect of surface plane orientation of the

fin facets and the dielectric-Ga2O3 interface quality is unclear

and requires further investigation.

FinFET high-voltage operation on wider devices with

LGD¼ 16lm and 21 lm was characterized with an Agilent

B1505A on a Cascade Tesla probe station. At VGS¼ 0 V,

the IDS is <10�7 Amps until a breakdown voltage (VBK)

is reached. For each LGD, a VTH¼þ0.8 is measured at

VDS¼ 10 V, which is shown by the inset of Fig. 5. It should be

noted that the ION for large LGD devices have a very high on-

resistance and do not saturate at VDS¼ 10 V. At VGS¼ 0 V, a

VBK was measured at 567 and 612 V for LGD¼ 16 and 21 lm,

respectively. As indicated in Fig. 5, VBK is destructive and

limited by peak electric fields in the gate oxide.

To conclude, we have fabricated an enhancement-mode

Ga2O3 MOSFET enabled by arrays of Sn-doped fins on a

semi-insulating (100) b-Ga2O3 substrate. A VBK exceeding

600-V at VGS¼ 0 V off-state was demonstrated and repre-

sents the highest breakdown voltage measured without field-

plate for b-Ga2O3 transistors, and the highest breakdown for

any transistor technology utilizing non-planar device chan-

nels.20–22,35–37 Future work includes understanding the role

of traps at the dielectric-Ga2O3 interface and optimizing on-

resistance by reducing the fin channel length and using

highly doped ohmic cap layer.
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