856 research outputs found
Phase Transitions and Adsorption Isotherm in Multilayer Adsorbates with Lateral Interactions
We analyze here a model for an adsorbate system composed of many layers by
extending a theoretical approach used to describe pattern formation on a
monolayer of adsorbates with lateral interactions. The approach shows, in
addition to a first order phase transition in the first layer, a transition in
the second layer together with evidence of a "cascade" of transitions if more
layers are included. The transition profiles, showing a staircase structure,
corroborate this picture. The adsorption isotherm that came out of this
approach is in qualitative agreement with numerical and experimental results.Comment: Submited to Physica A, LaTex, 22 pgs, 6 figure
The scattering from generalized Cantor fractals
We consider a fractal with a variable fractal dimension, which is a
generalization of the well known triadic Cantor set. In contrast with the usual
Cantor set, the fractal dimension is controlled using a scaling factor, and can
vary from zero to one in one dimension and from zero to three in three
dimensions. The intensity profile of small-angle scattering from the
generalized Cantor fractal in three dimensions is calculated. The system is
generated by a set of iterative rules, each iteration corresponding to a
certain fractal generation. Small-angle scattering is considered from
monodispersive sets, which are randomly oriented and placed. The scattering
intensities represent minima and maxima superimposed on a power law decay, with
the exponent equal to the fractal dimension of the scatterer, but the minima
and maxima are damped with increasing polydispersity of the fractal sets. It is
shown that for a finite generation of the fractal, the exponent changes at
sufficiently large wave vectors from the fractal dimension to four, the value
given by the usual Porod law. It is shown that the number of particles of which
the fractal is composed can be estimated from the value of the boundary between
the fractal and Porod regions. The radius of gyration of the fractal is
calculated analytically.Comment: 8 pages, 4 figures, accepted for publication in J. Appl. Crys
G-triplex structure and formation propensity
The occurrence of a G-triplex folding intermediate of thrombin binding aptamer (TBA) has been recently predicted by metadynamics calculations, and experimentally supported by Nuclear Magnetic Resonance (NMR), Circular Dichroism (CD) and Differential Scanning Calorimetry (DSC) data collected on a 3′ end TBA-truncated 11-mer oligonucleotide (11-mer-3′-t-TBA). Here we present the solution structure of 11-mer-3′-t-TBA in the presence of potassium ions. This structure is the first experimental example of a G-triplex folding, where a network of Hoogsteen-like hydrogen bonds stabilizes six guanines to form two G:G:G triad planes. The G-triplex folding of 11-mer-3′-t-TBA is stabilized by the potassium ion and destabilized by increasing the temperature. The superimposition of the experimental structure with that predicted by metadynamics shows a great similarity, with only significant differences involving two loops. These new structural data show that 11-mer-3′-t-TBA assumes a G-triplex DNA conformation as its stable form, reinforcing the idea that G-triplex folding intermediates may occur in vivo in human guanine-rich sequences. NMR and CD screening of eight different constructs obtained by removing from one to four bases at either the 3′ and the 5′ ends show that only the 11-mer-3′-t-TBA yields a relatively stable G-triple
Adsorption/Desorption Equilibria and Kinetics at Reconstructible Surfaces
A general kinetic theory, which takes explicit account of the phenomena occurring at reconstructible surfaces while adsorption or desorption proceed, is proposed. The theory contains a few free parameters which specify the adsorption and desorption rate constants, and the reconstruction and irreversibility degrees of the process
Mechanistic, structural and dynamic characterization of biomolecules: from DNA to membrane proteins
Interfering with HuR-RNA Interaction: Design, Synthesis and Biological Characterization of Tanshinone Mimics as Novel, Effective HuR Inhibitors
The human antigen R (HuR) is an RNA-binding protein known to modulate the expression of target mRNA coding for proteins involved in inflammation, tumorigenesis, and stress responses and is a valuable drug target. We previously found that dihydrotanshinone-I (DHTS, 1) prevents the association of HuR with its RNA substrate, thus imparing its function. Herein, inspired by DHTS structure, we designed and synthesized an array of ortho-quinones (tanshinone mimics) using a function-oriented synthetic approach. Among others, compound 6a and 6n turned out to be more effective than 1, showing a nanomolar Kiand disrupting HuR binding to RNA in cells. A combined approach of NMR titration and molecular dynamics (MD) simulations suggests that 6a stabilizes HuR in a peculiar closed conformation, which is incompatible with RNA binding. Alpha screen and RNA-electrophoretic mobility shift assays (REMSA) data on newly synthesized compounds allowed, for the first time, the generation of structure activity relationships (SARs), thus providing a solid background for the generation of highly effective HuR disruptors
Critical Review of Theoretical Models for Anomalous Effects (Cold Fusion) in Deuterated Metals
We briefly summarize the reported anomalous effects in deuterated metals at
ambient temperature, commonly known as "Cold Fusion" (CF), with an emphasis on
important experiments as well as the theoretical basis for the opposition to
interpreting them as cold fusion. Then we critically examine more than 25
theoretical models for CF, including unusual nuclear and exotic chemical
hypotheses. We conclude that they do not explain the data.Comment: 51 pages, 4 Figure
Fractal Nanotechnology
Self-similar patterns are frequently observed in Nature. Their reproduction is possible on a length scale 102–105 nm with lithographic methods, but seems impossible on the nanometer length scale. It is shown that this goal may be achieved via a multiplicative variant of the multi-spacer patterning technology, in this way permitting the controlled preparation of fractal surfaces
- …
