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ABSTRACT: A general kinetic theory, which takes explicit account of the
phenomena occurring at reconstructible surfaces while adsorption or desorption
proceed, is proposed. The theory contains a few free parameters which specify
the adsorption and desorption rate constants, and the reconstruction and
irreversibility degrees of the process. 

INTRODUCTION 

The adsorption of gases onto solid surfaces and their desorption (phenomena collectively referred to
as AD-sorption – read as “a-d-sorption”) may be described in a standard manner based on the
hypothesis that adsorption produces the loss of a few translational degrees of freedom of gas-phase
molecules (from 1, for mobile adsorption, to 3, for localized adsorption), leaving the internal
partition function of the molecule and the structure of the surface otherwise unchanged. If this
process occurs reversibly, desorption restores the pre-existing situation. The main characteristics of
the theory of AD-sorption are thus structure-less molecules (hard adsorbates) and non-
reconstructible surfaces (hard adsorbents) — the HH case in Figure 1. In many instances, the
properties of an AD-sorption process are contained in its equilibrium isotherm (hereinafter simply
called “isotherm”) and in its AD-sorption kinetics.

The theory of AD-sorption was first formulated to describe localized sub-monolayer
AD-sorption without lateral interactions on homogeneous surfaces and produced the Langmuir
isotherm (Hill 1960; Steele 1974). The theory was later extended to account for lateral interactions,
producing the Frumkin–Fowler–Guggenheim isotherm, or to describe mobile AD-sorption,
producing the Hill–de Boer isotherm (Hill 1960). In the presence of lateral interactions, the theory
predicted the possibility of two-dimensional condensation; experiments based on accurately
prepared surfaces confirmed the existence of this phenomenon (Steele 1974). Other extensions
were advanced to describe multilayer AD-sorption on homogeneous surfaces and produced the
Brunauer– Emmett–Teller (BET) isotherm for approximately monolayer coverages or the
Frenkel–Halsey–Hill isotherm at higher coverage (Steele 1974). 

Consideration of the heterogeneous nature of the adsorbing surface was the subject of
extended investigations that took place over many years (Cerofolini 1971, 1972, 1974, 1978;
Rudziński and Jaroniec 1974; Jaroniec et al. 1976; Rudziński et al. 1982; Jaroniec and Bräuer
1986; Jaroniec and Madey 1988; Jagiello and Schwartz 1991; Rudziński and Everett 1992;
Cerofolini and Re 1993; Cerofolini and Rudziński 1997); these investigations made it possible
to explain surface heterogeneity in terms of numerous isotherms (such as those proposed by
Freundlich, Temkin or Dubinin and Radushkevich), previously proposed empirically and known
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to provide an accurate description of AD-sorption on real surfaces (Jaroniec 1975; Cerofolini
1975, 1976a,b, 1982, 1983).

For the description of heterogeneous surfaces, two major models were adopted: in one model the
surface is visualized as being formed by a collection of indefinitely extended patches, each patch in
itself being homogeneous (patch-wise heterogeneity), while in the other model each zone is formed,
irrespective of its size, by a heterogeneous collection of sites with an adsorption-energy distribution
independent of the size of the region (random heterogeneity). In the absence of lateral interactions,
the two extreme topographies are equivalent. However, taking such interactions into account
removes the equivalence; accounting for the involved correlation effects (Ripa and Zgrablich 1975)
requires appropriate ad hoc constructions (Mayagoitia et al. 1990; Zgrablich et al. 1996a,b).

As a consequence, it was possible to formulate within the standard theory a scheme capable of
describing even very difficult cases, such as AD-sorption onto fractal surfaces (Pfeifer and Avnir
1983; Avnir et al. 1983; Avnir and Jaroniec 1989; Pfeifer et al. 1989; Jaroniec1995; Pfeifer and Liu
1997) or onto surfaces where geometric heterogeneity is combined with energetic heterogeneity
(Rudziński et al. 2001). For several AD-sorption models, time evolution of the system (described
using ordinary rate equations with integral order exponents) was found to produce equilibrium
states consistent, if not exactly the same, with those predicted by statistical mechanics. 

Although the above development occurred in a time span of approximately one century (the entire
20th century), the HH case depicted in Figure 1 applies only to situations where the adsorption energy
is small compared to the energy of other internal configurations of the surface and molecule — that
may happen only for van der Waals adsorption forces. The HH case, restricting the theory to
physisorption, does not exhaust the complexity of AD-sorption phenomena. In fact, whereas
AD-sorption-induced surface reconstruction, protein denaturation upon adsorption on polar
surfaces, or antigen–antibody interaction, etc., appear as genuine AD-sorption phenomena, they do
not fit the HH case. In these cases, the adsorbate, adsorbent, or both undergo even large changes in
their internal partition functions during the process and must thus be viewed as soft. 

With respect to reconstruction, Figure 1 shows that there are four possible cases: HH, hard
adsorbent and hard adsorbate; SH, soft adsorbent and hard adsorbate; HS, hard adsorbent and soft
adsorbent; and SS, soft adsorbent and soft adsorbate. Their complexity increases from case HH to
case SS. In this work, the standard theory of AD-sorption will be extended to account for the
AD-sorption on soft surfaces of hard adsorbates — the SH case. 

AD-SORPTION ON HARD SURFACES 

The construction of the theory of AD-sorption is usually assumed to go back to the second decade
of the 20th Century, when Langmuir gave a kinetic description of adsorption and desorption
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Figure 1. The complexity of AD-sorption phenomena in relation to the hard or soft nature of the adsorbent and the adsorbate.



assuming that they are first-order processes in the available and occupied sites, respectively,
and the processes run leaving unchanged the total amount of (empty or full) adsorption sites
(Langmuir 1918). The elementary development of the theory is reported here essentially with the
aim of defining symbols. In the above hypotheses, the amount N of adsorbed molecules and site
coverage Θ are simply proportional, 

(1)

(with Nm being the total amount of sites) and the rate equations are given by

(2)

(3)

where A and B are the rate constants for adsorption and desorption, respectively. The solution of
equations (2) and (3) is trivial: 

Nm � constant (4)

(5)

where τL is the harmonic composition of the time constants A�1 and B�1

Θ(0) is the initial condition, and is given by

(6)

The kinetic theory of gases and the absolute rate theory specify A and B as follows:

(7)

(8)

with σ being the cross-section for the (possibly activated) gas adsorption on each surface site, p
the partial pressure of the gas, T the temperature, kB the Boltzmann constant, m the molecular
mass, ν the vibration frequency perpendicular to the surface, and E* the activation energy for
desorption (coinciding in the simple cases with the adsorption energy q). In terms of these
quantities, the combination of equations (1) and (6) gives the familiar expression of the Langmuir
isotherm:
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For the Langmuir model, a statistical mechanical derivation is known. It is obtained by
considering the number of configurations of N distinguishable particles in Nm identical sites with
an adsorption energy q; the statistical mechanical derivation then gives

(10)

where pL � p0/z, p0 � kBT(2πmkBT/h2)3/2, h is the Planck constant, and z is the internal partition
function of the adsorbed molecule. Thus, equations (9) and (10) coincide provided that q � E* and

or equivalently

(11)

AD-SORPTION ON SOFT SURFACES 

Any theory g extending the Langmuir theory to AD-sorption on surfaces undergoing
reconstruction should satisfy the following features:

1. g  is constructed on the basis of the mass-action law; 
2. g   is reduced to the Langmuir theory in the absence of reconstruction; and
3. the equilibrium AD-sorption isotherm obtained from the kinetic model can be recovered (at

least in particular cases) from statistical mechanics. 

As shown in the following, to some extent this goal is possible. 
For the construction of g,  the hypotheses underlying the Langmuir theory will be re-written in

the following scheme (Cerofolini 2003a,b):

(12)

where � denotes an empty site, M a molecule, and • a site filled with one molecule M. Since, in
theory, a site is either empty or occupied (and no other state is possible), the total amount of sites
is given by 

The constancy of in the Langmuir theory follows from the following facts: the
disappearance of one empty site after adsorption results in the birth of one filled site, vice versa for
desorption, and at equilibrium each adsorption event is on average followed by a desorption event. 

Dynamic systems with surface reconstruction, once considered as reactions involving empty
and filled sites are, in general, not described by reactions (12). Rather,

(13)

(where the stoichiometric coefficients α+ and α− are free parameters of the theory) seems to
provide a sufficiently general, but still tractable, scheme for the description of AD-sorption on
reconstructible surfaces. 
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The idea underlying reaction scheme (13) is geometric in character — depending on the values
of α+ and α− , AD-sorption-induced reconstruction is responsible for roughening or smoothing of
the surface. However, any geometric change in the surface is responsible for changes in the energy
landscape of the system too, increasing or decreasing the energy heterogeneity of the surface.
Roughening without heterogenization as well as smoothing without homogenization are both
indeed improbable phenomena unless the energy landscape of the system is very smooth.
Examples of processes that may be described by reaction scheme (13), dominated by geometric
rather than energetic factors, may thus be the following: 

• reactions at porous oxides by hydrolysis of oxo bridges produced by water physisorbed onto
hydroxyl terminations (A) and the condensation with elimination of water from nearby
hydroxyl groups (D), or 

• the unfolding (A) and folding (D) of proteins resulting from AD-sorption of water or other
polar molecules. 

In the opposite approach, the geometric changes occurring during AD-sorption are described
only in terms of the heterogenization of the surface. The corresponding treatment of this case is
represented by the Monod–Wyman–Changeux treatment of allosteric effects(Monod et al. 1965). 

The author is aware of one attempt only for the analytical description of the geometric and
energetic changes simultaneously resulting during AD-sorption (Cerofolini and Cerofolini 1980);
this matter still seems too difficult for quantitative modelling.

Since, in an AD-sorption cycle described by reaction scheme (13), the numbers of molecules
and filled sites remain unchanged while the total number of empty sites varies by an amount
α+ � α− � 1, the surface undergoes a reversible reconstruction when

(14)

while the reconstruction is irreversible when .
The rate equations for reaction scheme (13) are given by

(15)

(16)

where A and B maintain the same meaning as in equations (7) and (8).
For any dynamic system, the equilibrium states play a special role. At equilibrium,

and , so that an equilibrium state exists only if the parameters A, B,
α+ and α− are such that the following system

(17)
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involves at least a non-trivial solution , in addition to the trivial solution (0, 0).
In the search for equilibrium states, equation (17) should first be solved for ; the
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that is satisfied for (the trivial case), or for α+ and α− satisfying equation (14): the
necessary condition for the occurrence of equilibrium is that the AD-sorption process is reversible.

The corresponding equations describing the time evolution of the system when equation (14) is
not satisfied may be written as a function of the degree of irreversibility of the AD-sorption
process as follows. Let ε be the net number of empty sites generated per adsorption event

(ε is a kind of degree of reconstruction of the surface) and let δ be the net number of empty sites
produced in an AD-sorption cycle per newly formed site, where

Since for reversible AD-sorption δ � 0, δ may be considered as a kind of degree of irreversibility
of the process. In terms of ε and δ, equations (15) and (16) become

(19)

(20)

In terms of ε and δ, equilibrium is specified by the conditions 

(21)
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Equations (21) and (22) are mutually consistent only if δ is equal to zero. In the following, the
discussion will be limited to the case of reversible reconstruction:

If δ � 0, equations (21) and (22) give consistent equilibrium conditions irrespective of any possible
dependence of ε on and (although the occurrence or not of equilibrium may depend on the
initial condition). The determination of the kinetics, instead, requires that such a dependence,

(23)
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If ε depends on either or , equation (24) can be solved by the separation of the variables, and
the solution allows the dynamic system {(15), (16), (23)}to be integrated by reduction to quadratures.
The discussion in the Appendix to this paper deals with the case of ε depending on alone.

The reason why the dynamic system (13) is referred to as a “reaction system” rather than as a
“reaction” arises from the fact that α+ and α− are, in general, dependent on and , and that
different dependencies may describe qualitatively different physical situations. Attention was initially
focused on the case of reversible AD-sorption, described by equation (14), and on 
depending linearly on only (Cerofolini 2003a,b). This choice provided an extension of the model
originally proposed by Landsberg to account for the Elovich equation in adsorption kinetics
(Landsberg 1955, 1962). A brief treatment of this case is given in the Appendix to this paper. 

In the present paper, the dynamic system will be developed for the case of ε being independent
of and :

constant (25)

Although this case is simpler than the one described in the Appendix, it is formally interesting and
provides a model for γ-on statistics. 

AD-SORPTION WITH A CONSTANT DEGREE OF RECONSTRUCTION

Equation (25) is the simplest case described by reaction system (13), namely constant reconstruction.
According to the sign of ε0, adsorption may result in progressive passivation of the original sites
(ε0 � 0) or in growth (ε0 � 0). The case of constant reconstruction with ε0 � 0 applies to a situation
which has recently acquired considerable interest — the growth of dendrimers (Newkome et al. 2001). 

Before confining the analysis to equilibrium situations, it may be observed that for ,
equation (24) becomes 

whose integration is straightforward: 

(26)

with being the amount of empty sites in the absence of adsorbed particles. Equation (26) holds
true even for ε0 � 0 and therefore holds true for all ε0 values (note that for ε0 � –1 it reduces to

, giving the constancy of the number of sites, irrespective of their degree of
occupation).

Equilibrium 

Inserting equation (26) into the other equilibrium condition, equation (21), leads to an equation
that provides a unique physical solution (with � 0) only for ε0� B/A:
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Summing equations (27) and (28) side by side gives

from which the Langmuir theory is once again reproduced ( ) for ε0 � –1.
Bearing equation (11) in mind, equation (27) becomes

(29)

For ε0 � –1, this isotherm is reduced to the Langmuir isotherm provided that 
Taking ε0 � 1, q � qs (the latent heat of evaporation from the bulk phase) and pL exp(–qs/kBT)

� ps (the saturated vapour pressure at temperature T), equation (29) may be used instead to
describe AD-sorption in multilayers:

(30)

where x is the relative pressure, x � p/ps. In terms of relative pressure, the Langmuir isotherm may

be written as Θ � Cx/(1 � Cx) with . Multilayer AD-sorption on the top

of a layer directly adsorbed on the surface and obeying the Langmuir isotherm is thus described by

the equation
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original BET equation, 
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whose integration is elementary:

(32)

Defining 

and recalling equation (27), equation (32) becomes 

(33)

The kinetics are therefore controlled by the sign of B/A – ε0: for B/A – ε0 � 0, the amount of filled
sites relaxes to the equilibrium value with an exponential decrease of the initial algebraic excess;
otherwise, for B/A – ε0 � 0, the solution runs away diverging exponentially (with upward
concavity) to �∞ with a time constant . The behaviour described by equation
(33) for the first case, i.e. exponential relaxation to equilibrium, is similar to what happens for the
Langmuir isotherm; what changes is simply the time constant of the process. 

AD-SORPTION ON RECONSTRUCTIBLE SURFACES AS A MODEL FOR γ-ON
STATISTICS 

Let us consider a system with a chemical potential µ obtained by arranging N non-interacting
particles in M equivalent sites. If f denotes the mean occupation number of the energy level E, the
formula 

(34)

converts to the canonic Fermi–Dirac, Bose–Einstein or Boltzmann occupation statistics for γ
values of �1, –1, or 0. 

Relationship (34) may formally be regarded as the occupation statistics of a class of particles
(called γ-ons) whose statistical properties may be deduced by assuming that N particles can be
arranged in M states in a number W(N) of ways given by

(35)

with ; the singular case γ � 0 requires special analysis as described by Byczuk et al.
(1995).To date, a physical derivation of equation (35) has not been advanced (Acharya and
Swamy 1994).
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We now return to equilibrium AD-sorption on reconstructible surfaces with constant
reconstruction. Defining , equation (10) takes the form 

(36)

Interpreting Q as an energy level, q as chemical potential and ε0 as –γ, not only does equation (36)
coincide (for N � and M � ) with equation (34) and reproduce the canonic occupation
statistics for suitable values of ε0, but it also provides a concrete example of γ-on statistics.

This fact is quite surprising because at a first glance one could be tempted to assume that the
statistical mechanics of equilibrium AD-sorption on reconstructible surfaces is described by
Haldane fractional statistics (Haldane 1991). Consider a box formed by M sites that can be filled
by structure-less particles. Assuming that the number of available states after the adsorption
of N particles is given by [with α constant with N and having the same
meaning as α+ in reaction scheme (13)], and using the familiar counting statistics:

instead of (34), one gets the occupation statistics of anyons (Haldane 1991): 

(37)

where f � N/M. Equation (37) does not coincide with (34), so that the counting statistics (35) is
not recovered in the frame of Haldane fractional statistics; however, it should be noted that in the
high-temperature limit equation (37) is reduced to (34) (Byczuk et al. 1995) and hence to (29). 

Haldane fractional statistics were first considered in AD-sorption phenomena by Riccardo and
co-workers (Riccardo et al. 2004; Romá et al. 2006), who applied their analysis to the case of
AD-sorption of polyatomic molecules where the adsorption of one molecule depresses more sites
than the one actually occupied; the general case considered above and extending even beyond the
usual limits (–1, �1) was instead treated by Cerofolini (2006). 

MATHEMATICS, AT LAST

The “unreasonable effectiveness of mathematics in the natural sciences” (i.e., that the mathematical
structure of a physical theory often points the way to further advances in that theory and even to
empirical predictions) led Wigner to argue that this is not just a coincidence and should therefore
reflect some larger and deeper truth about both mathematics and physics (Wigner 1960). 

Without pretending to give exhaustive answers to the puzzle of the miracle of the
appropriateness of the language of mathematics for the formulation of the laws of natural sciences
(Wigner 1960; Colyvan 2001), it is suggested that one of the reasons for such an unreasonable
effectiveness is that the application
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can, to some extent, be inverted (in a way that it may thus be considered injective). For example,
in the preface to his book entitled Thermodynamics and Statistical Mechanics, Landsberg (1978)
mentioned several points of interest for those who are fascinated by the interaction between
physics and mathematics: how thermodynamics is related to the theorem that the arithmetic mean
of two numbers is less than the geometric mean, how the increase in entropy can be described in
terms of the notion of equivalence classes and how the Euler formula concerning the vertices, edges
and faces of a convex polyhedron can be related to the Gibbs’ phase rule. Since the author shares
this fascination, it is intended to close this paper by discussing how the theory of AD-sorption on
reconstructing surfaces as given here may be formulated to extend to one of the most fundamental
concepts of mathematics — the natural numbers. 

The theory of AD-sorption on reconstructing surfaces can formally be re-stated by considering
a system S admitting a set of states Sn (n being a natural number, n ∈ N) such that each state has
internal degrees of freedom (empty states, �, and filled states, •) and evolves via exchange with
its environment of ambient particles M (‘tokens’) according to the following processes: 

(38)

where α+ and α− are real numbers ( ) independent of the state Sn.
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The underlying physical processes used to generate such a chain are now ignored, it being considered
as given axiomatically. No assumption is made as to whether the Markov chain has a lower bound n

(that would imply the existence of a state Sn such that Sn is not defined) or an upper bound (that

would imply the existence of a state S−n such that S−n is not defined). 
If n is finite, without loss of generality it can be taken as 0 and this case can be used to model

reversible AD-sorption; instead, if n � �∞, the Markov chain (39) can be used to model the
evaporation/condensation equilibrium at liquid surfaces. A finite value for n– implies instead that
AD-sorption occurs in a restricted geometry (thereby placing a limit on the thickness of the
adsorbed film) or is completed with total passivation of the adsorbed film, while n– � �∞ implies
the absence of such effects. 

Let us now relax the condition of reversibility, 

(40)

In the case of irreversibility, the repeated application of the same operator to any Sn generates

an ascending sequence of states: from S0 to , and so on.

The application of an operator to Sn however generates a state that does not coincide

with Sn − 1. Similarly, the application of a descending operator to any of the states does not

yield the state (generating by the application of ) but still another state .

In this way, the overall AD-sorption process may be viewed as a hierarchy of ascending Markov

chains, each generated from a descending state, as sketched in Figure 2. 
Leaving aside the complexity of irreversible AD-sorption for a moment, let us concentrate on

the possibility of using reaction scheme (38) for the definition of a new class of mathematical
quantities that generalize the concept of natural numbers. 

As discussed by Fraenkel (1955), natural numbers embody two properties in themselves: they are
ordinals (as they are capable of ordering sequentially all elements created by a certain process) and
they are also cardinals (as they quantify the content of any finite set). What is special in natural
numbers is that these properties — so different in principle — actually coincide. On other hand, it
would be interesting to construct a set NC depending on a set of parameters C reducing to N for
suitable values of the parameter, but otherwise able to distinguish order from content. 
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Figure 2. The intricate Markov chain describing irreversible AD-sorption.



Before trying to construct NC, let us recall the Peano axioms for natural numbers:

P 1 If n is a natural number, the successor n� of n is a natural number.
P 2 There is a natural number, called 0, that is not a successor of any natural number. 
P 3 If m� � n�, then m � n.
P 4 (Principle of Induction) Let S be a set containing 0; then, if for all n in S, n� is also in S,

then S coincides with N.

Thus, the Peano scheme is essentially defined by two characters — numbers and the operation that
generates a successor from any given number. Since n repetitions of the same unit operation generate
a set with just n objects, the Peano axioms imply the equivalence between ordinality and cardinality. 

Reaction scheme (38) contains three elements, viz. empty sites (�), filled sites (�) and a unit
operation (�M); in this way it contains sufficient elements to map ordinality (sequence of
operations) and cardinality (content) differently. 

Define the operation of filling the pre-existing void sites as the complete adsorption event and
consider first the case of reversible AD-sorption. Imagine starting from a situation where the system
is formed by only one empty site. The first complete adsorption event (i.e. the filling of the original
site by one molecule) produces α+ empty sites. The second complete adsorption event (i.e. the
filling of the newly generated α+ sites with α+ molecules) produces two empty sites and the system
contains 1 � α+ molecules. Repeating the argument, the system after the nth complete adsorption
event will be formed by αn

+empty sites and will contain 1 � α+ � α2
+� … � α+

n�1 molecules.
To simplify the notation, let us denote α+ by α. Let nα be the ordered pair given by the

progressive order of adsorption n and the amount of tokens sn(α) contained in the system,

nα = (n, sn(α))

where nα depends on α because of the dependence of sn on α:

for , or n for α � 1.

Let Sα be the set of all nα and denote with Tα the operation bringing nα onto (n � 1)α:

T αnα � ((n � 1), sn + 1(α))

� (n � 1)α

In view of this definition, the following properties hold true:

Property 1 If nα is a member of Sα, (n � 1)α belongs to Sα.
Property 2 The element 0α cannot be obtained by the application of T α to any member nα of Sα.
Property 3 If T αnα � T α mα, then nα � mα.

Property 4 If 0α∈ Sα and if, for any nα∈ Sα, T αnα∈ Sα also applies, then the sequence

{0α, T α0α, T α
2
0 α, T α

3
0α,...} exhausts Sα. 

From these properties one can define

• an ordering, which states that mα� nα if nα is obtained by the application, possibly
repeated, of T α to mα and,

sn( )α =α ≠ 1sn
n( ) /α α α= −( ) −( )1 1

sn
n( ) ;α α α α= + + + + −1 1

2 1L
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• an addition, defining mα� nα, and 
• a subtraction, defining, for nα� 0α, (n – 1)α in terms of a descending operator D1 − α,

(n – 1)α � D1 − αnα � (n – 1, sn − 1(α))

and re-iterating the procedure to all mα, with mα� nα

(n – m)α � D
m

1 − α nα � (n – m, sn − m(α))

It is straightforward to verify that relation and operations maintain the same properties as for
natural numbers. 

Thus, provided that T α is interpreted as the operation of taking the successor in Peano axioms and
the states of the AD-sorption system are identified with the natural numbers, the above properties are
the same as for natural numbers, thereby allowing the set of all nα to be denoted as Nα:

Nα � {0α, 1α, 2α, …, nα, …}

However, an important fact should be noted: the elements n and sn(α) (denoting the ordinality and
cardinality, respectively, of nα) generally do not coincide. As a consequence, each Nα can be taken
as a model of N where generally ordinality and cardinality do not coincide; they coincide only for
N1 (whose physical counterpart is the BET model of AD-sorption, on the top of a layer directly
adsorbed on the surface).

Interestingly, when applied for the description of evaporation, the case of AD-sorption on the
top of a layer directly adsorbed on the surface, is the physical counterpart of integers, rather than
natural numbers. Even more interesting is what happens in the case of condition (40). Indeed, for
irreversible AD-sorption property 4 does not hold true, i.e. that it provides a model containing
natural numbers when the Principle of Induction does not hold true.

Although much of mathematics can be built from natural numbers, the full body of mathematics
requires a theory of sets. The common form of the theory of sets, ZF � AC, is based on the axioms
of Extensionality, Foundation, Pairing, Union, Infinity and Power sets, and the axiom schemes of
Separation and Replacement (defining the Zermelo–Fraenkel theory, ZF) plus the Axiom of
Choice, AC. The construction of naturals in this theory is possible in different ways, of which the
Von Neumann construction is the one most frequently employed.

Accepting other definitions of the basic number system (as the one proposed above) opens the
problem of the most appropriate axioms accounting for them. If the number system does not
satisfy the Principle of Induction, the underlying set theory should not involve the Axiom of
Choice (because it implies Induction); instead, if the number system considered is formed by
integers (rather than naturals) with contents, it seems plausible that Foundation should not be
accepted as an axiom of the underlying set theory. This observation re-opens the problem of the
degree of belief one may have in the axioms of set theory (Maddy 1988a,b).

CONCLUSIONS

This paper has been devoted to the construction of a rigorous kinetic theory of AD-sorption on
reconstructible surfaces reducing to the Langmuir model in the limit where the degree of
reconstruction is zero. The theory is essentially contained in reaction scheme (13) and refers
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specifically to various cases through a suitable choice of the variable parameters. In the case of
reversible AD-sorption onto a surface with a constant degree of reconstruction, the theory describes
a system that relaxes exponentially to an equilibrium state coinciding with the equilibrium state of
γ-ons. Reaction scheme (13) is useful for elucidating fundamental mathematical concepts such as
the nature of natural numbers.
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APPENDIX: THE CASE OF LINEAR RECONSTRUCTION AND THE ELOVICH
EQUATION

The cases of greater physical interest are those for which ε depends on , essentially because
this case captures a situation where the evolution of the exposed surface is controlled by its state
rather than by its occupation. In this case, equations (15) and (16) become

(41)

(42)

Eliminating between equations (41) and (42) leads to the relationship

(43)

which may be solved for by the separation of variables:

(44)

(with being the amount of empty sites at ; must not be confused with the amount

, i.e. the amount of empty sites at t � 0: � only when (0) � 0). If ε( ) does

not change its sign during the integration interval, equation (44) can be solved for , thus giving

as a function of :
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Substituting η( ) for in equation (41) gives

(46)

which is the key equation of the theory. In fact, the equilibrium conditions are immediately obtained
by putting in equation (46), i.e.

while the kinetics are determined through solving equation (46) employing the separation of
variables:

(47)

Just to provide an elementary (but important) application of this formula, we confine it to the case

of adsorption on an initially clean surface (thus with ) undergoing a reconstruction

which varies linearly with the amount of available sites from which desorption is

neglible (B � 0). In this case, integrating equation (44) leads to , whose

insertion into equation (47) gives

Integration of this differential equation is straightforward:

(48)

These kinetics have different behaviours according to the sign of b (Cerofolini 1995):

• for b � 0, it is convenient to make the sign explicit by putting b � –�b� in equation (48),
thus obtaining

These kinetics predict a linear increase in with t in the early stagesN•
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eventually reducing to a logarithmic decrease for . The occurrence of such a
logarithmic time law is well known in adsorption (as well as oxidation) phenomena, where
it is generally referred to as the Elovich equation.

• For b � 0, the kinetics are characterized by the same linear increase of with t in the

early stages but the reaction rate diverges at time , thus providing a model for

explosive reactions.
• For b � 0, equations (41) and (42) give and , thus 

providing an example of kinetics depending linearly on time.
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