65 research outputs found

    Joint Inversion of Coseismic and Early Postseismic Slip to Optimize the Information Content in Geodetic Data: Application to the 2009 M_w 6.3 L'Aquila Earthquake, Central Italy

    Get PDF
    When analyzing the rupture of a large earthquake, geodetic data are often critical. These data are generally characterized by either a good temporal or a good spatial resolution, but rarely both. As a consequence, many studies analyze the coseismic rupture with data that also include one or more days of early postseismic deformation. Here, we invert simultaneously for the coseismic and postseismic slip with the condition that the sum of the two models remains compatible with data covering the two slip episodes. We validate the benefits of this approach with a toy model and an application to the 2009 M_w 6.3 L'Aquila earthquake, using a Bayesian approach and accounting for epistemic uncertainties. For the L'Aquila earthquake, we find that if early postseismic deformation is not an explicitly acknowledged coseismic signal, coseismic slip models may overestimate the peak amplitude while long‐term postseismic models may largely underestimate the total postseismic slip amplitude. This example illustrates how the proposed approach could improve our comprehension of the seismic cycle, fault frictional properties, and the spatial and temporal relationship between seismic rupture, afterslip, and aftershocks

    Rapid response to the M_w 4.9 earthquake of November 11, 2019 in Le Teil, Lower RhĂŽne Valley, France

    Get PDF
    On November 11, 2019, a Mw 4.9 earthquake hit the region close to Montelimar (lower RhĂŽne Valley, France), on the eastern margin of the Massif Central close to the external part of the Alps. Occuring in a moderate seismicity area, this earthquake is remarkable for its very shallow focal depth (between 1 and 3 km), its magnitude, and the moderate to large damages it produced in several villages. InSAR interferograms indicated a shallow rupture about 4 km long reaching the surface and the reactivation of the ancient NE-SW La Rouviere normal fault in reverse faulting in agreement with the present-day E-W compressional tectonics. The peculiarity of this earthquake together with a poor coverage of the epicentral region by permanent seismological and geodetic stations triggered the mobilisation of the French post-seismic unit and the broad French scientific community from various institutions, with the deployment of geophysical instruments (seismological and geodesic stations), geological field surveys, and field evaluation of the intensity of the earthquake. Within 7 days after the mainshock, 47 seismological stations were deployed in the epicentral area to improve the Le Teil aftershocks locations relative to the French permanent seismological network (RESIF), monitor the temporal and spatial evolution of microearthquakes close to the fault plane and temporal evolution of the seismic response of 3 damaged historical buildings, and to study suspected site effects and their influence in the distribution of seismic damage. This seismological dataset, completed by data owned by different institutions, was integrated in a homogeneous archive and distributed through FDSN web services by the RESIF data center. This dataset, together with observations of surface rupture evidences, geologic, geodetic and satellite data, will help to unravel the causes and rupture mechanism of this earthquake, and contribute to account in seismic hazard assessment for earthquakes along the major regional CĂ©venne fault system in a context of present-day compressional tectonics

    Mesures InSAR et modélisation de faibles déformations d'origine anthropique (lac Mead, USA) ou tectonique (faille de Haiyuan, Chine)

    No full text
    I used radar interferometry to measure and model the Earth surface deformation of small amplitude (<<cm). InSAR has proven to be a powerful tool to mapp surface deformation with sub-centimetric accuracy. However, interferograms correction from atmospheric delays is often required to reach such an accuracy. A large part of my work has thus been dedicated to this task. The first study area is the deformation around the Lake Mead (Nevada, USA). This artificial lake has been filled with water in 1935. An earlier study, based on leveling measurements, has shown that the load associated with lake impoundement induced a subsidence of 17 centimeters. This relaxation process has been argued as analogous to the postglacial rebound, but at a smaller spatial scale and with a much lower viscous relaxation time scale. To quantify the deformation and thus constrain the crust and mantle rheological parameters in the lake area, we analyze multiple interferograms (241) based on 43 ERS images acquired between 1992 and 2001. Corrected interferograms are then inverted to solve for the time series of ground motion in the lake Mead area. We obtain a time series of the deformation in the lake Mead area with a millimetric accuracy. The deformation is non linear in time and spreads over a large spatial scale. The deformation model allows to constrain the rheology in the lake Mead area. The model takes into account the loading history of the lake since 1935. We show that a simple elastic response with parameters constrained by seismic wave propagation does not explain the amplitude and spatial wavelength of the observed motion. To fit the data, a low viscosity (around 1018^{18} Pa.s) in the mantle below a 30 km thick elastic layer is required. In a second study, I have studied the interseismic displacement across the Haiyuan fault. This fault is one of the major left-lateral faults that accommodates part of the deformation due to India-Asia collision at the north-eastern edge of the Tibetan plateau. Our objective is to better constrain the present mechanical behavior of this fault system, at the origin of two M∌\sim8 earthquakes in 1920 and 1927 and along which a seismic gap with high potential seismic hazard has been identified. We focus on the Tianzhu seismic gap segment, along which the long-term slip rate has been estimated to 12 (+/-)4 mm/yr from neotectonic studies (Lasserre et al., 1999). We analyze ERS SAR data from two tracks along descending orbits between longitudes 102.6\degresE and 105.3\degresE and latitudes 36\degresN and 38\degresN. The results between both independent tracks are very consistent. A screw dislocation model in an elastic half space indicates an average fault-parallel velocity of 6.5 ±\pmmm/yr and a very small apparent locking depth of about 1.7 km. Superficial creep or a compliant zone around the fault could also explain this low value.Cette thĂšse porte sur la mesure par interfĂ©romĂ©trie radar (InSAR), et la modĂ©li\-sation de faibles dĂ©formations, de moyennes Ă  grandes longueurs d'onde spatiale. L'InSAR s'est rĂ©vĂ©lĂ©e ĂȘtre, depuis quelques annĂ©es, un outil performant pour mesurer de petites dĂ©formations, Ă  la condition, notamment, de corriger suffisamment les dĂ©lais atmosphĂ©riques perturbant le signal radar et la mesure de la dĂ©formation. Une partie de cette thĂšse montre des dĂ©veloppements mĂ©thodologiques spĂ©cifiques effectuĂ©s afin d'obtenir une mesure subcentimĂ©trique effective sur deux chantiers d'application. Les deux Ă©tudes prĂ©sentĂ©es dans ce manuscrit montrent deux approches diffĂ©rentes, liĂ©es aux contraintes matĂ©rielles (nombre d'images/nombre d'interfĂ©rogrammes calculables) et au type de dĂ©formation recherchĂ©. Dans un premier temps, j'ai mesurĂ© la dĂ©formation autour du lac Mead (Nevada, USA). Cette dĂ©formation est due aux fluctuations du niveau d'eau du lac depuis sa mise en eau en 1935. Pour quantifier cette dĂ©formation, et contraindre les paramĂštres visco-Ă©lastiques de la lithosphĂšre dans la rĂ©gion du lac Mead, j'ai analysĂ© 241 interfĂ©rogrammes calculĂ©s avec des images acquises par les satellites ERS entre 1992 et 2002. L'inversion des interfĂ©rogrammes corrigĂ©s des dĂ©lais orbitaux et tropostatiques a permis d'Ă©tablir la sĂ©rie temporelle du dĂ©placement du sol sur ces 10 annĂ©es. Des modĂšles directs montrent qu'une simple rĂ©ponse Ă©lastique n'explique ni l'amplitude de la dĂ©formation, ni la longueur d'onde spatiale de la dĂ©formation. Il semble donc qu'il soit nĂ©cessaire de prendre en compte la viscositĂ© du manteau pour retrouver la dĂ©formation. Un modĂšle simple, concordant avec une Ă©tude prĂ©cĂ©dente \citep{kaufmann00a}, constituĂ© d'une croĂ»te Ă©lastique d'environ 30 km et d'un manteau supĂ©rieur prĂ©sentant une viscositĂ© de 1018^{18} Pa.s, explique bien les donnĂ©es. Dans un deuxiĂšme temps, je me suis intĂ©ressĂ© Ă  la dĂ©formation intersismique Ă  travers la faille de Haiyuan (Gansu, Chine), situĂ©e au nord est du plateau tibĂ©tain. Il s'agit d'une des failles dĂ©crochantes sĂ©nestres majeures qui accommode en partie la collision Inde-Asie. L'objectif Ă©tait de mieux contraindre le comportement mĂ©canique de ce systĂšme de faille, Ă  l'origine de deux sĂ©ismes de M∌\sim8 au cours du XXiĂšme siĂšcle. Je me suis focalisĂ© sur un segment particulier de la faille appelĂ© ''la lacune sismique de Tianzhu'', dont la vitesse long-terme Ă  Ă©tĂ© estimĂ©e Ă  12 ±\pm4 mm/an Ă  partir d'Ă©tudes neotectoniques. J'ai analysĂ© des donnĂ©es radar ERS acquises sur deux orbites descendantes le long de la lacune. Une fois les interfĂ©rogrammes corrigĂ©s de l'erreur rĂ©siduelle orbitale et du dĂ©lai tropostatique, ils ont Ă©tĂ© sommĂ©s afin d'obtenir une carte de vitesse moyenne dans la zone de faille (dĂ©terminĂ©e par les images ERS disponibles, i.e. 1993-1998). Un modĂšle classique de dislocation dans un demi-espace Ă©lastique homogĂšne indique une vitesse instantanĂ©e de 6.5 ±\pm3 mm/an, mais aussi une profondeur de blocage faible autour de 1.7 km. Cependant, ce rĂ©sultat peut aussi ĂȘtre expliquĂ© par d'autres modĂšles incluant une zone d'endommagement autour de la faille ou du glissement superficiel

    In Situ Exploration of the Giant Planets and an Entry Probe Concept for Saturn

    No full text
    ESA 2013 call for White Papers for the definition of L2 and L3 Missions in the ESA science programme, 201

    Expérimenter les humanités numériques : Des outils individuels aux projets collectifs

    No full text
    Univers en perpĂ©tuelle expansion et au foisonnement chaotique, Internet offre un nombre incalculable d’outils, dont l’exploration paraĂźt parfois hors de portĂ©e. Dans le paysage des sciences humaines, les blogs, les logiciels bibliographiques, les bases de donnĂ©es, les Ă©ditions en ligne et les wikis, tous ces objets qui Ă©veillaient notre curiositĂ© il y a une dĂ©cennie, sont devenus aussi anodins qu’omniprĂ©sents. Mais comment bien s’en servir ? Les apprĂ©hensions face Ă  ces outils – et leur simple mais robuste mĂ©connaissance – sont encore largement rĂ©pandues. Or on ne peut plus ignorer leur intĂ©rĂȘt, voire leur nĂ©cessitĂ©, et les chercheurs qui s’y essaient ne savent souvent pas par quel bout attraper ces logiciels nouveaux. C’est Ă  cela que cet ouvrage veut les aider, de façon simple et prĂ©cise, et il entend le faire sans en cacher les difficultĂ©s, mais sans dissimuler non plus qu’elles sont dĂ©sormais connues, donc surmontables, et que, dans la majoritĂ© des cas, le rĂ©sultat vaut tous les efforts Ă  consentir

    Fault Geometry and Slip Distribution at Depth of the 1997 Mw 7.2 Zirkuh Earthquake: Contribution of Near-Field Displacement Data

    No full text
    International audienceIn this study, we reestimate the source model of the 1997 Mw 7.2 Zirkuh earthquake (northeastern Iran) by jointly optimizing intermediate‐field Interferometry Synthetic Aperture Radar data and near‐field optical correlation data using a two‐step fault modeling procedure. First, we estimate the geometry of the multisegmented Abiz fault using a genetic algorithm. Then, we discretize the fault segments into subfaults and invert the data to image the slip distribution on the fault. Our joint‐data model, although similar to the Interferometry Synthetic Aperture Radar‐based model to the first order, highlights differences in the fault dip and slip distribution. Our preferred model is ∌80° west dipping in the northern part of the fault, ∌75° east dipping in the southern part and shows three disconnected high slip zones separated by low slip zones. The low slip zones are located where the Abiz fault shows geometric complexities and where the aftershocks are located. We interpret this rough slip distribution as three asperities separated by geometrical barriers that impede the rupture propagation. Finally, no shallow slip deficit is found for the overall rupture except on the central segment where it could be due to off‐fault deformation in quaternary deposits
    • 

    corecore