182 research outputs found

    Aerobic exercise and action observation priming modulate functional connectivity

    Get PDF
    Aerobic exercise and action observation are two clinic-ready modes of neural priming that have the potential to enhance subsequent motor learning. Prior work using transcranial magnetic stimulation to assess priming effects have shown changes in corticospinal excitability involving intra- and interhemispheric circuitry. The objective of this study was to determine outcomes exclusive to priming- how aerobic exercise and action observation priming influence functional connectivity within a sensorimotor neural network using electroencephalography. We hypothesized that both action observation and aerobic exercise priming would alter resting-state coherence measures between dominant primary motor cortex and motor-related areas in alpha (7-12 Hz) and beta (13-30 Hz) frequency bands with effects most apparent in the high beta (20-30 Hz) band. Nine unimpaired individuals (24.8 ± 3 years) completed a repeated-measures cross-over study where they received a single five-minute bout of action observation or moderate-intensity aerobic exercise priming in random order with a one-week washout period. Serial resting-state electroencephalography recordings acquired from 0 to 30 minutes following aerobic and action observation priming revealed increased alpha and beta coherence between leads overlying dominant primary motor cortex and supplementary motor area relative to pre- and immediate post-priming timepoints. Aerobic exercise priming also resulted in enhanced high beta coherence between leads overlying dominant primary motor and parietal cortices. These findings indicate that a brief bout of aerobic- or action observation-based priming modulates functional connectivity with effects most pronounced with aerobic priming. The gradual increases in coherence observed over a 10 to 30-minute post-priming window may guide the pairing of aerobic- or action observation-based priming with subsequent training to optimize learning-related outcomes

    From black strings to black holes: nuttier and squashed AdS5_5 solutions

    Full text link
    We construct new solutions of the Einstein equations with negative cosmological constant in five spacetime dimensions. They smoothly emerge as deformations of the known AdS5_5 black strings. The first type of configurations can be viewed as the d=4d=4 Taub-NUT-AdS solutions uplifted to five dimensions, in the presence of a negative cosmological constant. We argue that these solutions provide the gravity dual for a N=4{\cal N}=4 super-Yang-Mills theory formulated in a d=4d=4 homogeneous G\"odel-type spacetime background. A different deformation of the AdS5_5 black strings leads to squashed AdS black holes and their topological generalizations. In this case, the conformal infinity is the product of time and a circle-fibration over a base space that is a two-dimensional Einstein space.Comment: 19 pages, 7 figure

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    Experimental progress in positronium laser physics

    Get PDF

    Coupled networks of permanent protected areas and dynamic conservation areas for biodiversity conservation under climate change

    Get PDF
    The complexity of climate change impacts on ecological processes necessitates flexible and adaptive conservation strategies that cross traditional disciplines. Current strategies involving protected areas are predominantly fixed in space, and may on their own be inadequate under climate change. Here, we propose a novel approach to climate adaptation that combines permanent protected areas with temporary conservation areas to create flexible networks. Previous work has tended to consider permanent and dynamic protection as separate actions, but their integration could draw on the strengths of both approaches to improve biodiversity conservation and help manage for ecological uncertainty in the coming decades. As there are often time lags in the establishment of new permanent protected areas, the inclusion of dynamic conservation areas within permanent networks could provide critical transient protection to mitigate land-use changes and biodiversity redistributions. This integrated approach may be particularly useful in highly human-modified and fragmented landscapes where areas of conservation value are limited and long-term place-based protection is unfeasible. To determine when such an approach may be feasible, we propose the use of a decision framework. Under certain scenarios, these coupled networks have the potential to increase spatio-temporal network connectivity and help maintain biodiversity and ecological processes under climate change. Implementing these networks would require multidisciplinary scientific evidence, new policies, creative funding solutions, and broader acceptance of a dynamic approach to biodiversity conservation

    Cotton in the new millennium: advances, economics, perceptions and problems

    Get PDF
    Cotton is the most significant natural fibre and has been a preferred choice of the textile industry and consumers since the industrial revolution began. The share of man-made fibres, both regenerated and synthetic fibres, has grown considerably in recent times but cotton production has also been on the rise and accounts for about half of the fibres used for apparel and textile goods. To cotton’s advantage, the premium attached to the presence of cotton fibre and the general positive consumer perception is well established, however, compared to commodity man-made fibres and high performance fibres, cotton has limitations in terms of its mechanical properties but can help to overcome moisture management issues that arise with performance apparel during active wear. This issue of Textile Progress aims to: i. Report on advances in cotton cultivation and processing as well as improvements to conventional cotton cultivation and ginning. The processing of cotton in the textile industry from fibre to finished fabric, cotton and its blends, and their applications in technical textiles are also covered. ii. Explore the economic impact of cotton in different parts of the world including an overview of global cotton trade. iii. Examine the environmental perception of cotton fibre and efforts in organic and genetically-modified (GM) cotton production. The topic of naturally-coloured cotton, post-consumer waste is covered and the environmental impacts of cotton cultivation and processing are discussed. Hazardous effects of cultivation, such as the extensive use of pesticides, insecticides and irrigation with fresh water, and consequences of the use of GM cotton and cotton fibres in general on the climate are summarised and the effects of cotton processing on workers are addressed. The potential hazards during cotton cultivation, processing and use are also included. iv. Examine how the properties of cotton textiles can be enhanced, for example, by improving wrinkle recovery and reducing the flammability of cotton fibre

    Observation of Events with an Energetic Forward Neutron in Deep Inelastic Scattering at HERA

    Get PDF
    In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q2 in the range 3 · 10-4 \u3c xBJ \u3c 6 · 10-3 and 10 \u3c Q2 \u3c 100 GeV2
    corecore