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Abstract

Aerobic exercise and action observation are two clinic-ready modes of neural priming that

have the potential to enhance subsequent motor learning. Prior work using transcranial

magnetic stimulation to assess priming effects have shown changes in corticospinal excit-

ability involving intra- and interhemispheric circuitry. The objective of this study was to

determine outcomes exclusive to priming- how aerobic exercise and action observation

priming influence functional connectivity within a sensorimotor neural network using electro-

encephalography. We hypothesized that both action observation and aerobic exercise

priming would alter resting-state coherence measures between dominant primary motor

cortex and motor-related areas in alpha (7–12 Hz) and beta (13–30 Hz) frequency bands

with effects most apparent in the high beta (20–30 Hz) band. Nine unimpaired individuals

(24.8 ± 3 years) completed a repeated-measures cross-over study where they received a

single five-minute bout of action observation or moderate-intensity aerobic exercise priming

in random order with a one-week washout period. Serial resting-state electroencephalogra-

phy recordings acquired from 0 to 30 minutes following aerobic and action observation

priming revealed increased alpha and beta coherence between leads overlying dominant

primary motor cortex and supplementary motor area relative to pre- and immediate post-

priming timepoints. Aerobic exercise priming also resulted in enhanced high beta coherence

between leads overlying dominant primary motor and parietal cortices. These findings indi-

cate that a brief bout of aerobic- or action observation-based priming modulates functional

connectivity with effects most pronounced with aerobic priming. The gradual increases in

coherence observed over a 10 to 30-minute post-priming window may guide the pairing of

aerobic- or action observation-based priming with subsequent training to optimize learning-

related outcomes.

Introduction

Priming is a form of implicit (nonconscious) memory whereby prior experience or exposure

to a stimulus shapes current behavior [1]. While priming originated from the cognitive

psychology field, its fundamental concepts have infused rehabilitation research [2, 3]. The
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transient modifications in synaptic function imparted by priming have the potential to

heighten the effects of a subsequent goal-mediated event occurring during motor rehabilita-

tion training. Indeed, priming the primary motor cortex (M1) and related cortical regions

with the delivery of non-invasive neurostimulation [4–7] pharmacology [8], movement

[9, 10], and mental imagery [11], have been investigated as strategies to enhance learning-

related neuroplasticity and clinical rehabilitation outcomes. Priming may therefore serve

a valuable role in neurorehabilitation when paired with a subsequent intervention such as

physical training.

Aerobic exercise and action observation are two clinic-ready modes of priming neural con-

nections. Past work employing a single bout of aerobic exercise-based priming in non-clinical

cohorts demonstrated enhanced motor skill acquisition [12] and motor learning outcomes

[13, 14] along with heightened responses to neuromodulation [13, 15, 16]. Action observation,

a type of motor imagery that involves watching an individual perform a goal-directed activity

[2], uses the mirror neuron system [17] to engage brain regions typically active during move-

ment execution. These areas include M1, premotor, and parietal cortices and supplementary

motor area [18–21]. Akin to aerobic exercise priming, action observation priming has also

enhanced the effects of subsequent motor training [22–24] and neuromodulation [21] and,

thus, may be a viable alternative in the clinical setting for those unable to safely participate in

aerobic exercise. Despite these encouraging findings, the underlying mechanisms of priming

are not fully understood. Elucidating these mechanisms will enrich our understanding of how

priming readies the neural system for motor skill acquisition and learning, which may there-

fore optimize learning-related outcomes associated with the pairing of priming and the train-

ing/intervention.

Discussions on the purported mechanisms of aerobic exercise and action observation prim-

ing [25, 26] have focused on the neurophysiological effects such as the release of brain-derived

neurotrophic factor (BDNF) [13] and increased corticospinal excitability, often involving M1,

as demonstrated by transcranial magnetic stimulation (TMS) studies [27–30] and cerebral

blood flow [31, 32]. Others have reported alterations in hippocampal long-term potentiation

[33], neurogenesis [34], and protein structure [35] along with changes in BDNF-mediated

synaptic transmission [36] from aerobic exercise training. Grey matter volume [37] and corti-

cal activation [38] changes have also been reported from action observation training.

A single aerobic exercise session also modulated various intracortical and interhemispheric

circuits [39]. These particular findings emphasize the growing interest and examination of

functional neural network connectivity to characterize brain states, assess intervention effi-

cacy, and predict one’s learning and/or rehabilitation outcomes [40]. Determining the effects

of priming on functional connectivity may supplement past work evaluating neural excitability

(i.e., TMS) by providing a richer account of how priming augments neural circuits and net-

works. The examination of priming-induced alterations in functional connectivity may rein-

force the concept of shared neuroplasticity mechanisms (akin to those described above)

between aerobic exercise and action observation but may also reveal distinct mechanisms.

Knowledge pertaining to the engagement of both mutual and distinct functional connections

with these priming approaches may foster novel circuit-specific therapies or priming strategies

to enhance learning and/or rehabilitation effects.

Rather than examining outcomes arising from the pairing of priming with an intervention

or training, the focus here was to examine outcomes exclusive to priming. The purpose of this

work was to therefore determine how aerobic- and action observation-based priming augment

functional neural connectivity as determined by changes in neural oscillatory coherence using

electroencephalography (EEG). The attributes of EEG, including its portability, quick set-up

and application, and capability of directly capturing neural activity, make it an ideal modality

PLOS ONE Priming modulates functional connectivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0283975 April 6, 2023 2 / 18

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0283975


for studying the effects of priming. We hypothesized that both action observation and aerobic

exercise priming would alter resting-state EEG measures of coherence between dominant M1

and motor-related regions in alpha (7–12 Hz) and beta (13–30 Hz) frequency bands, which

are bands associated with visuospatial attention [41–43] and motor function [44], respectively.

Based on past EEG findings that demonstrated changes in functional connectivity in the beta

frequency band following an acute bout of exercise [45], we further hypothesized that the

effects of aerobic exercise priming on EEG coherence would favor the beta band, specifically

the high beta (20–30 Hz) frequency range. Likewise, while EEG studies examining action

observation have shown changes in cortical oscillations involving both alpha [46] and beta

[47] bands, EEG work specifically examining coherence demonstrated alterations in the alpha

band [48]. We therefore hypothesized that changes in coherence following action observation

priming would be most apparent in the alpha frequency band.

Materials and methods

Participants

We recruited participants between the ages of 18 and 30 years old from the University of

North Carolina at Chapel Hill. Additional inclusion criteria included right handedness (to

minimize variability due to discrepancies in hemisphere dominance across participants) as

confirmed by the Edinburgh Handedness Inventory, no history of cardiovascular or neuro-

logic diagnoses, sufficient cognitive function as assessed by the Montreal Cognitive Assess-

ment, and the ability to tolerate five minutes of moderate aerobic activity. Individuals were

excluded from study participation if they had a resting blood pressure� 180/110 mmHg. All

participants provided written informed consent as approved by the Institutional Review Board

at the University of North Carolina at Chapel Hill.

Procedures

Study design. Participants completed one baseline visit and two priming visits as part of a

repeated measures cross-over study with a one-week washout period between priming visits

(Fig 1). During the baseline visit, participants completed a medical history questionnaire and a

behavioral battery evaluating mood (Beck Depression Inventory), executive function (Trails

Making Test B), physical activity level (General Practice Physical Activity Questionnaire,

GPPAQ), balance (Mini Balance Evaluation Systems Test, Mini BESTest), and self-efficacy

(Activities-specific Balance Confidence (ABC) Scale). Investigators also examined upper- and

lower-extremity motor function using the Nine-Hole Peg Test and gait speed. Participants’

gait speed was used to establish parameters associated with the aerobic priming condition.

We included the above assessments of mood, self-efficacy, executive function, dexterity, etc.

because these factors may either influence one’s response to priming [49, 50] or outcomes

associated with motor learning [51, 52] when these priming modes are paired with a physical

training intervention, which is the intent of future work. During this visit, participants were

also filmed while walking on a treadmill at a self-selected speed. Video recordings involved

one-minute clips of anterior, lateral, and posterior views of the individual. Video footage was

later incorporated in the action observation priming condition (described below). In prepara-

tion for the priming visits, participants were instructed to avoid caffeine consumption and

exercise within one hour of the visit. Participants were also encouraged to maintain a consis-

tent medication regimen as necessary throughout study participation. At the start of each

priming visit, investigators collected participants’ resting heart rate (HR) and blood pressure.

Participants completed a series of 3-minute resting-state EEG recordings occurring before,

immediately after, and at 10, 20, and 30 minutes following priming.
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Priming. Participants were randomized to one of two priming sequences: aerobic exercise

at the first priming visit and then action observation at the second priming visit OR action

observation priming at the first priming visit and then aerobic priming at the second priming

visit (Fig 1). A one-week washout period was used between priming conditions to minimize

the potential influence of one priming condition on the other. Each priming condition lasted

approximately five minutes.

The aerobic priming condition involved participants walking on a treadmill maintaining

their HR in a targeted zone based on maximum HR, computed as 208 –(0.7 * age), and resting

HR [53]. The lower limit of the target HR zone was calculated as (0.5 * (maximum HR—rest-

ing HR) + resting HR), and the upper limit of the target HR zone was (0.7 * (maximum HR—

resting HR) + resting HR) [54]. Investigators monitored participants’ HR and oxygen satura-

tion during the priming bout at one-minute intervals. Participants were instructed to only

increase treadmill speed in order to maintain their targeted HR zone.

The action observation priming condition involved participants viewing a five-minute

video on a 22-inch computer monitor positioned approximately 3-feet from seated partici-

pants. The video entailed a montage of 15-second clips of unimpaired individuals walking on

a treadmill at a self-selected pace. The video also included five randomly inserted clips of the

participant walking on the treadmill (previously recorded at the baseline visit). To ensure

consistent attention throughout the intervention, participants were instructed beforehand to

count the number of clips they viewed of themselves walking.

EEG acquisition and pre-processing. We acquired five three-minute resting-state EEG

recordings with a dense-array 256-lead Hydrocel net (Electrogeodesics Inc., Eugene, OR) at

each visit. During collection, participants were instructed to remain still while sitting upright

with support. Throughout the recording, participants focused on a central fixation cross pro-

jected on a laptop computer screen positioned approximately two feet from them. Data were

Fig 1. Experiment and study design. Participants completed one baseline visit and two priming visits (grey boxes) separated by a one-week washout

period. Priming order was randomized to either aerobic exercise priming first and action observation priming second (dotted arrows) or action

observation priming first followed by aerobic exercise priming a week later (solid arrows). During each priming visit, participants completed five three-

minute resting-state electroencephalography recordings before, after, and at 10, 20, and 30 minutes following a 5-minute bout of priming.

https://doi.org/10.1371/journal.pone.0283975.g001
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sampled at 1,000 Hz using a high input impedance Net Amp 400 amplifier and Net Station 4.5

software (Electrogeodesics Inc.).

We transferred the raw and unfiltered EEG data to Matlab (R2017b, MathWorks, Natick,

MA) for offline preprocessing using EEGLAB [55] version 2019.0. Data processing involved:

re-referencing to the average signal across all leads after the removal of 64 electrodes overlying

cheek and neck regions, 40 Hz low-pass filtering, 0.5 Hz high-pass filtering, segmentation into

one-second non-overlapping epochs, visual inspection for muscle artifact removal, and ocular

and cardiac artifact removal using an Infomax independent components analysis [55], and

then one last visual inspection to remove any remaining artifact. Pre-processed EEG then

underwent a surface Laplacian transformation to mitigate volume conduction effects [56].

EEG coherence measurements. Using a fast Fourier transform, we calculated measures

of coherence in frequency bands the alpha (7–12 Hz), low beta (13–19 Hz), and high beta

(20–30 Hz) frequency bands. These particular frequency bands contribute to cognitive and

motor function [41–44]. The primary seed region for coherence measurements involved a

set of predefined electrodes (C3 and the surrounding six leads) overlying left M1 (lM1, domi-

nant hemisphere) [57, 58]. The C3 lead corresponds to the precentral gyrus, and previous

work has shown that EEG activity recorded from this lead reflects M1 activity [59]. We exam-

ined interhemispheric functional connectivity between electrodes overlying lM1 with an

additional set of predefined electrodes overlying rM1 (C4 and surrounding six electrodes)

and also intrahemispheric functional connectivity between lM1 and predefined leads overly-

ing supplementary motor area (SMA) and left parietal (lPr) and dorsal premotor (lPMd) cor-

tical regions. Several of these regions were included in prior work examining performance-

related gains on a visuomotor task following visuospatial training [60]. A list of all predefined

regions with corresponding electrode numbers is provided in the S1 Table. Coherence mea-

surements were computed as the squared correlation coefficient. Values ranged from 0 to 1

with values approaching 1 signifying consistency of phase and amplitude ratios across time in

a given frequency.

Statistical analysis. Statistical analyses were performed in JMP Pro 16.0.0 (SAS Inc., Cary,

NC). This study involved a two-period (week one, week two), two-condition (aerobic exercise

priming, action observation priming) repeated-measures crossover design with a one-week

washout period. We measured coherence during each visit at five timepoints: pre, post, and

10, 20, and 30 minutes post-priming (post10, post20, and post30). To assess differences in

coherence across timepoints (within-condition change) and between priming conditions, we

employed a mixed-effects linear model. Fixed effects were priming condition and timepoint.
Each participant served as a random intercept to model within-subject correlation.

To ensure that significant changes in coherence did not arise from the effects of carryover,

period, and priming sequence, we performed several screening procedures. We assessed pre

timepoints for significant carryover and period effects by running the model with priming con-
dition, period, and sequence as fixed effects. We also screened for unequal carryover, period

effects, and interactions between priming condition and period by running the main model

with priming condition, period, and sequence as fixed effects. Post-hoc analyses involved pair-

wise comparisons using Tukey’s honestly significant difference with an alpha level of .05

denoting significance. Model assumptions of normal distribution of residuals and homoske-

dasticity were confirmed with Shapiro-Wilk and Levene tests, respectively.

Though we did not conduct a formal power analysis given the pilot nature of this work, we

refer to recent and related work depicting significant changes in EEG activity following action

observation priming in both unimpaired [61] and clinical [50] cohorts. In the former, a small

sample of young adults (n = 6) ranging in age from 18–27 years completed approximately 4

minutes of action observation priming (viewing left/right elbow flexion) delivered in 6-second
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increments followed by a motor imagery task of the same action [61]. Investigators observed

significant gains in event-related desynchronization (diminished EEG power; -33.50% to

-36.09%) in leads overlying lM1 and rM1 compared to the control priming condition (viewing

arrows indicative of left/right elbow flexion, -22.82% to -23.70%) [61]. Similar findings were

also observed in a small (n = 11) heterogeneous cohort of individuals with stroke ranging in

age from 37–76 years and 18–1919 days post-stroke with 6 participants depicting aphasia,

apraxia, frontal lobe dysfunction, and/or unilateral spatial neglect [50]. Participants completed

approximately 3 minutes of action observation-based priming over the course of the experi-

ment, and investigators observed a significant enhancement of event-related desynchroniza-

tion in a similar frequency band (30 ± 5.0%) as compared to the motor imagery condition

(12.2 ± 3.9%) [50]. Despite discrepancies in EEG outcome measures (coherence vs. event-

related desynchronization), the similarities between these studies [50, 61] and ours including

sample size, abbreviated priming bouts, and utilization of EEG to assess priming, bolster the

reliability of this work, which is fundamental to the future implementation of short priming

sessions in clinical settings.

Results

Nine individuals (7 females, average age ± standard deviation: 24.8 ± 3 years) completed study

procedures. Overall, the cohort demonstrated normal balance (Mini BESTest: 27.8 ± 0.44) and

high balance self-efficacy (ABC Scale: 96.1 ± 2.7%). Participants primarily reported themselves

as active (n = 6) with the remaining as moderately active (n = 2) and inactive (n = 1) as defined

by the GPPAQ. Table 1 provides additional cohort detail.

Participants reached their target heart rate in 178.8 ± 74 seconds after they started walking

on the treadmill when the priming condition commenced. The average time elapsed between

the ending of the aerobic exercise priming condition to the first post-prime EEG recording

was 199.1 ± 71 seconds. During the action observation priming condition, all participants

correctly reported the number of video clips that featured themselves walking on the treadmill.

The average time elapsed between the end of the action observation priming condition to the

first post-prime EEG recording was 46.0 ± 28 seconds. Continuous wear of the EEG cap dur-

ing the experiment necessitated additional time following the aerobic priming condition to

check placement and impedance of EEG leads to ensure sufficient signal quality for post-

prime EEG recordings.

Table 1. Participant demographics.

Subject Sex Age (yrs) Priming Sequence BDI normal = 0 TMT-B (sec) 9-HPT (D/ND) Gait speed (m/sec) RHR (bpm) THRR (bpm)

1 F 24 A-AO 0 58.2 0.82 1.28 70 135–155

2 M 30 A-AO 0 48.5 0.75 1.27 52 120–147

3 M 24 A-AO 5 53.4 1.22 1.31 86 139–160

4 F 20 A-AO 6 52.7 0.91 1.58 90 142–163

5 F 32 AO-A 5 56.2 0.98 1.31 75 130–152

6 F 24 A-AO 0 31.1 0.97 1.49 78 135–158

7 F 23 AO-A 2 70.6 1.02 1.59 61 126–153

8 F 22 A-AO 3 60.0 1.06 1.23 73 133–157

9 F 24 AO-A 6 49.9 0.96 1.38 65 128–153

A-AO, aerobic exercise priming before action observation priming; AO-A, action observation priming before aerobic exercise priming; BDI, Beck Depression

Inventory; D/ND, ratio of dominant to non-dominant hand performance; F, female; M, male; RHR, resting heart rate; THRR, Target Heart Rate Range; TMT-B, Trail

Making Test B

https://doi.org/10.1371/journal.pone.0283975.t001
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Both aerobic and action observation priming conditions enhanced alpha, low beta, and

high beta EEG coherence in a predefined sensorimotor network (Fig 2). As hypothesized,

modulations of EEG coherence following aerobic exercise priming were most abundant in the

high beta frequency band. The results summarized below represent significant findings follow-

ing the screening of pre timepoints and the main model to assess for undesirable carryover,

period effects, and interactions between condition and period. Figs 3–6 illustrate individual-

Fig 2. EEG coherence pre/post priming. Aerobic exercise (A) and action observation (AO) priming resulted in enhanced EEG coherence in alpha (7–

12 Hz, top), low beta (13–19 Hz, middle), and high beta (20–30 Hz, bottom) frequency bands most pronounced at 10, 20, and 30 minutes post-priming

(Post10, Post20, and Post30). White leads represent the coherence seed region overlying left primary motor cortex. Black leads denote right primary

motor cortex, grey leads denote left parietal cortex, green leads denote dorsal premotor cortex, and magenta leads denote supplementary motor area.

https://doi.org/10.1371/journal.pone.0283975.g002
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and group-level coherence measurements between leads overlying lM1 and SMA (Fig 3), lPr

(Fig 4), rM1 (Fig 5), and lPMd (Fig 6) for aerobic exercise and action observation priming

across all timepoints and frequencies. Additional group-level coherence information is pro-

vided in the S2–S4 Tables.

Fig 3. Coherence in leads overlying left primary motor (lM1) cortex and supplementary motor area (SMA). Significant increases in alpha, low beta,

and high beta lM1-SMA coherence occurred after aerobic (A) and action observation (B) priming. Individual participant data points illustrated along

with group averages and standard deviations. ‡ indicates significant increase from pre timepoint. * indicates significant increase from post timepoint.

https://doi.org/10.1371/journal.pone.0283975.g003

Fig 4. Coherence in leads overlying left primary motor (lM1) and left parietal (lPr) cortices. Increases in high beta lM1-lPr coherence occurred after

aerobic priming (A). ‡ indicates significant change from pre timepoint. * indicates significant increase from post timepoint.

https://doi.org/10.1371/journal.pone.0283975.g004

Fig 5. Coherence in leads overlying left primary motor (lM1) and right primary motor (rM1) cortices. Increases in high beta lM1-rM1 coherence

occurred following aerobic priming (A). ‡ indicates significant increase from pre timepoint. * indicates significant increase from post timepoint.

https://doi.org/10.1371/journal.pone.0283975.g005
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Coherence: lM1-SMA

For alpha coherence between leads overlying lM1 and SMA (lM1-SMA), a significant effect

of timepoint was observed (F(4,59.2) = 11.49, p< .0001) with post-hoc analyses revealing signifi-

cantly greater coherence at post10, post20, and post30 timepoints compared to pre (t = 4.36–

5.25, p = .0001-.0005) and also at post10, post20, and post30 timepoints compared to post

(t = 3.64–4.55, p = .0003-.005) (Fig 3).

Similar findings for low and high beta lM1-SMA coherence were also observed. For

low beta lM1-SMA coherence, there was a significant effect of timepoint (F(4,59.4) = 18.43,

p< .0001) with post-hoc analyses indicating significant increases in coherence at post10,

post20, and post30 timepoints relative to pre (t = 5.75–6.32, p < .0001) and post (t = 4.62–5.18,

p< .0001-.0002, Fig 3) timepoints. For high beta lM1-SMA coherence, a significant effect of

timepoint occurred (F(4,59.3) = 32.7, p< .0001) with post-hoc analyses again indicating signifi-

cantly greater coherence at post10, post20, and post30 timepoints relative to pre (t = 7.46–8.07,

p< .0001) and post (t = 6.79–7.40, p< .0001) timepoints (Fig 3).

Coherence: lM1-lPr

A significant interaction between priming condition and timepoint occurred (F(4,59.0) = 3.07,

p = .023) for high beta coherence between leads overlying lM1 and lPr (lM1-lPr). Post-hoc

analyses showed significantly greater high beta lM1-lPr coherence at post10 and post20 time-

points relative to the pre timepoint for the aerobic priming condition (t = 4.19–5.04, p = .0002-

.003, Fig 4A). Significantly greater high beta lM1-lPr coherence at post10, post20, and post30

timepoints compared to the immediate post timepoint for the aerobic priming condition also

occurred (t = 4.80–6.62, p < .0001-.0004, Fig 4A).

Coherence: lM1-rM1

A similar interaction between priming condition and timepoint resulted for high beta coher-

ence between leads overlying bilateral M1 cortices (lM1-rM1, F(4,59.9) = 3.78, p = .008). Post-

hoc analyses demonstrated significantly greater coherence at post10 and post20 timepoints

compared to pre (t = 4.39–5.71, p< .0001-.002) and post (t = 4.30–5.62, p< .0001-.002) time-

points following the aerobic priming condition (Fig 5A). The non-normal distribution of

residuals involving high beta lM1-rM1 coherence (W = 0.968, p = .05), however, necessitates

caution with the interpretation of these findings.

Fig 6. Coherence in leads overlying left primary motor (lM1) and left dorsal premotor (lPMd) cortices. Aerobic (A) and action observation (B)

priming did not result in any significant change in alpha, low beta, or high beta lM1-lPMd coherence.

https://doi.org/10.1371/journal.pone.0283975.g006
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Coherence: lM1-lPMd

We did not observe significant modulations in alpha, low beta, and high beta coherence in

leads overlying left M1 and lPMd (lM1-lPMd) following aerobic and action observation prim-

ing (Fig 6).

Discussion

The purpose of this study was to determine how two clinic-ready modes of motor system

priming influence functional connectivity as measured by EEG coherence. Our preliminary

findings indicate that both aerobic and action observation priming resulted in increased alpha

and beta lM1-SMA coherence. Aerobic priming also resulted in increased high beta lM1-lPr

and lM1-rM1 coherence. Expanding on previous TMS work showing alterations in corticosp-

inal excitability following similar modes of priming, this work demonstrates that a relatively

short (five-minute) bout of priming also mediates neural oscillatory coherence likely reflecting

alterations in neural communication [62] that may foster a favorable neural environment for

subsequent learning.

Informed by past research associating attention/visuospatial [41–43] and motor system [44]

function with alpha and beta bands, we chose to focus on these frequencies in our current

work. We observed increases in alpha and beta lM1-SMA coherence with both action observa-

tion and aerobic exercise priming and also increased high beta lM1-lPr coherence following

aerobic exercise priming. These findings likely reflect both the attentional and sensorimotor

processing involved in action observation and aerobic exercise. Prior work has demonstrated

interactions between attention and motor system function, including alterations in SMA activ-

ity [63], and also the involvement of parietal cortex in somatosensory and cognitive processes,

including selective attention [64]. Additionally, more recent fMRI work examining changes

in cortical activity following aerobic exercise [65] and action observation [20] have shown

modulations in postcentral, secondary somatosensory, and parietal regions which reinforce

our identified functional connections from EEG.

Notably, neither mode of priming significantly impacted coherence between leads overlying

lM1 and lPMd. In contrast to motor training, motor priming is not goal-directed nor does it

entail skill-based training [25]. Several potential explanations may account for this finding.

A lack of modulation of lM1-lPMd coherence emphasizes these training vs. priming distinc-

tions. Given the role of the premotor cortex in motor planning, this finding may also reflect

minimal motor planning requirements associated with aerobic exercise and action observation

priming. These findings parallel prior action observation work. In a similar study examining

action observation of gait in two cohorts of subacute stroke (n = 5) and unimpaired controls

(n = 9), investigators observed increased activation in inferior parietal, frontal, and temporal

cortical regions in both cohorts [20]. Further, a meta-analysis of 139 neuroimaging studies to

determine cortical areas associated with action observation reported a bilateral neural network

involving similar regions [66] that are consistent with regions comprising the mirror neuron

system [17]. While the focus of this work was directed at the sensorimotor system, examina-

tion of functional connections within the mirror neuron system following motor priming may

be important in subsequent motor training outcomes. This finding may also reveal universal

challenges associated with EEG, particularly dense-array EEG, where leads in close proximity

capture similar signals thus resulting in elevated coherence.

We recognize that our coherence finding of enhanced high beta lM1-lPr coherence follow-

ing aerobic priming depicts specificity with regards to both frequency and priming, which ech-

oes findings from previous EEG work demonstrating distinct mu (8–12 Hz) and beta (18–25

Hz) band EEG topographies within a sensorimotor network during motor imagery and motor
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execution [67]. Also, Dal Maso et al. [45] observed increases in alpha and beta band functional

connectivity following an acute bout of aerobic exercise with greater abundance of exercise-

induced effects in the beta band. Because there was no ensuing motor training session and

retention test included in our study, it is difficult to surmise how priming and frequency-spe-

cific changes in coherence impact learning outcomes, or at least the improvement in motor

performance following a single training session. However, previous findings of high beta

coherence between leads overlying lM1 and lPr areas significantly predicted greater motor

skill acquisition in a group of young (18–30 years), unimpaired participants [68], which under-

scores the importance of this functional connection and frequency band that only aerobic

exercise priming elicited. Additional work is necessary to examine how priming-induced

changes in functional connectivity contribute to the enhancement of subsequent motor learn-

ing. Nevertheless, our findings indicate that aerobic exercise priming results in more pro-

nounced changes in coherence in a frequency band central to motor functioning, which may

equate to an enhanced environment for future motor training and learning.

Another important observation from this work was that priming-induced changes in

coherence took at least 10 minutes to develop and persisted for at least 30 minutes. These find-

ings align with other work that also featured multiple post-test sessions, including a session

immediately after aerobic exercise completion [39]. Potential factors mediating this timeframe

may relate to changes in cerebral blood flow or the release of various neurotrophic factors,

such as BDNF and vascular endothelial growth factor along with the release of catecholamines

such as norepinephrine and dopamine [26]. Inconsistencies in the literature pertaining to the

upregulation of BDNF following acute bouts of exercise [13, 15], for example, encourage fur-

ther investigation of these factors including their possible role in action observation priming.

Importantly, our findings of increased coherence occurring over 10 to 30 minutes post-prim-

ing also delineates a temporal window that corresponds to an optimal neural environment for

potential learning. Commencing motor training during this timeframe or structuring a train-

ing session whereby training-related demands on the individual peak during this window may

result in better learning-related outcomes. Further, our findings of no pre to immediate post

differences in coherence suggests that a brief “pause” between priming and subsequent motor

training may be warranted to capitalize on the priming.

A major discrepancy between our work and that of others examining aerobic exercise and

action observation-based priming was duration. Participants in our study completed a consid-

erably shorter bout of priming in comparison to the 20 to 30-minute bouts featured in other

studies [13, 15, 22, 27, 39, 65, 69]. With the ultimate goal of clinical implementation, specifi-

cally in stroke rehabilitation, we assert that a five-minute bout of priming possesses greater

clinical feasibility given that the average treatment session lasts only 30 minutes. To our knowl-

edge, there exists no other short duration aerobic training study. In addition to those studies

of short duration action observation training referenced above [50, 61], work by Hioka et al.

[20] involved participants viewing six 30-second blocks of gait observation alternating with 6

30-second blocks of rest for a total of 6 minutes in length. Comparison of observation and rest

conditions by investigators revealed activation in regions consistent with the mirror neuron

system in the observation condition. We therefore recognize the need for additional work to

establish and confirm the internal validity of our priming protocol.

Relatedly, the intensity of aerobic exercise priming in this work overlaps with others [15, 39,

65, 69] and adheres to clinical recommendations [70]. The use of a target heart rate range not

derived from maximal exercise testing (i.e., VO2 max) further ensures efficient clinical transla-

tion. The low-to-moderate intensity range employed here may also lessen exercise-induced

cortisol [71], which has been shown to negatively impact neuroplasticity [72] and future learn-

ing [73]. Confirming if similar priming-induced changes in functional connectivity occur in a
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stroke population is a next step, but it requires judicious consideration of other personal fac-

tors including prior level of function, stroke severity, comorbidities, cognitive level, fitness

experience, time since stroke, and medication use [74]. Furthermore, the post-stroke neural

landscape, typified by immense neuroplasticity potential and shifts in glutamatergic and

GABAergic transmission [75], presents several future research directions in the context of sen-

sorimotor priming. In addition, exercise intensity appears to regulate resting-state neural con-

nectivity in networks supporting attention and cognitive processing, sensorimotor function,

affect, and reward [76]. Modulations in coherence observed here may roughly correspond to

an “in-between” exercise intensity state as participants exercised at a low to moderate intensity.

Future work employing a similar experimental design but with higher intensity activity may

observe discrepancies in the up or downregulation of coherence and also differences in the

onset and lasting effects of coherence modulation as compared to findings observed in this

work. The consideration of exercise intensity in an aerobic-based priming study is therefore

imperative and likely requires adjustment when accounting for disease progression and/or the

timeframe of recovery following neural injury such as stroke.

Strengths and limitations

This study contains several notable strengths including the examination of two clinically feasi-

ble modes of priming, use of a cross-over study design, and the application of EEG as a tool to

determine priming effects on functional connectivity. Serial EEG coherence measurements is

another strength of this study. Previous work examining within-session reliability of resting-

state EEG coherence measurements in 40 healthy young adults confirmed the reliability of

both alpha and beta coherence measurements (r = .80-.97), which supports changes in coher-

ence due to priming vs. random variability [77].

We also acknowledge limitations with the current work. In line with the pilot nature of this

study, our sample size was small. We encourage caution with the interpretation of our find-

ings, including the interaction between timepoint and condition interaction involving leads

overlying lM1-lPr for aerobic exercise priming as differences in high beta coherence between

conditions and/or large standard deviation values at pre timepoints may have contributed to

the finding. Additionally, our sample was comprised primarily of physically active females,

which limits the generalizability of our findings. Additional work to validate these findings,

assess potential covariates (e.g., physical activity level, age, mood, etc.), and confirm the feasi-

bility and efficacy of these priming modes in a clinical cohort are warranted. We also recognize

that six of the nine participants were randomized to the A-AO sequence; however, the non-sig-

nificant effect of sequence when added to the model mitigated this issue. Though we attempted

to standardize priming duration between aerobic exercise and action observation priming,

participants typically required an additional three minutes of treadmill walking to achieve

their target heart rate range. The average time from the completion of priming to the start of

EEG recording was also generally longer for the aerobic exercise condition. It is unknown how

a slight delay in acquisition time of the immediate post-priming EEG recording influenced our

overall findings. Given the increase in coherence beginning at 10-minutes post-priming, we

suspect that these delays had only a minimal effect.

Though much of the neuroimaging literature in aerobic exercise and action observation

has focused primarily on the activity of cortical regions, activity modulation from subcortical

structures may also occur [65], which highlights the inherent limitation of EEG as confined

to the cortex. We acknowledge that our predefined electrode groups, including the lM1

seed region, were based on average location, as source localization (other than a spatial

Laplacian transform) and head modeling did not occur. Also, our EEG analyses involved the
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examination of coherence between a seed region (dominant, lM1) and predefined groups of

electrodes overlying secondary motor regions. The possibility exists that aerobic exercise and/

or action observation priming augments functional connections outside of the sensorimotor

neural network. Indeed, prior work has shown aerobic exercise-induced alterations in cogni-

tive neural networks involving dorsolateral prefrontal cortex [78], for example. Therefore,

examination of whole brain connectivity and the incorporation of data-driven approaches as

done previously [58] may reveal other relevant connections and networks. The global changes

in coherence (Fig 2) observed following action observation may also arise not only from the

action ingredient (walking) but also from ingredients related to selective and sustained atten-

tion. For instance, in our action observation priming condition, 75% of the video clips pre-

sented to participants entailed other people walking, and participants were asked beforehand

to count the number of clips of themselves walking. As action observation involves the viewing

of purposeful activity to eventually mimic or replicate during practice, a similar priming

approach in a stroke rehabilitation setting might entail participants viewing typical gait pat-

terns from unimpaired individuals for the majority of the priming session with occasional

clips of themselves walking depicting atypical gait. As previous work has shown differences

in brain activity evoked from different perspectives (e.g., first- vs. third-person) [79], the

coherence findings presented here may differ according to attentional features of the action

observation condition. Future work should discern specific contributions of action vs. atten-

tion on coherence to determine if these ingredients synergistically enhance subsequent motor

learning.

Conclusions

Priming represents an efficient and potentially cost-effective strategy to enhance the effects of

subsequent goal-mediated training. Motivated by past work demonstrating transient modifica-

tions in corticospinal excitability following aerobic exercise- [14, 27, 39] and action observa-

tion-based [28, 29] priming, this study sought to determine how these two clinic-ready modes

of priming modulated functional connectivity. Our main finding was that serial resting-state

EEG recordings collected before and up to 30 minutes following priming showed increases in

alpha, low beta, and high beta coherence between leads overlying dominant M1 (seed region)

and other motor-related regions, including SMA and lPr cortices. These functional connec-

tions tended to strengthen over time. Collectively, this work compliments past TMS work

examining intra- and intercortical circuitry by providing preliminary findings that enrich our

understanding of the underlying mechanisms exclusive to priming. The findings presented

here may also inform future studies of clinically-feasible dosing (priming intensity and dura-

tion) and temporal pairing with subsequent motor training. Confirming the presence (or

absence) of similar connectivity findings in a clinical cohort such as stroke is an essential next

step.
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