2,590 research outputs found
Mechanistic Heterogeneity in Site Recognition by the Structurally Homologous DNA-Binding Domains of the ETS-Family Transcription Factors Ets-1 and PU.1
ETS-family transcription factors regulate diverse genes through binding at cognate DNA sites that overlap substantially in sequence. The DNA-binding domains of ETS proteins (ETS domains) are highly conserved structurally, yet share limited amino acid homology. To define the mechanistic implications of sequence diversity within the ETS family, we characterized the thermodynamics and kinetics of DNA site recognition by the ETS domains of Ets-1 and PU.1, which represent the extremes in amino acid divergence among ETS proteins. Even though the two ETS domains bind their optimal sites with similar affinities under physiologic conditions, their nature of site recognition differs strikingly in terms of the role of hydration and counter-ion release. The data suggest two distinct mechanisms wherein Ets-1 follows a “dry” mechanism that rapidly parses sites through electrostatic interactions and direct protein-DNA contacts, while PU.1 utilizes hydration to interrogate sequence-specific sites and form a long-lived complex relative to the Ets-1 counterpart. The kinetic persistence of the high-affinity PU.1/DNA complex may be relevant to an emerging role of PU.1, but not Ets-1, as a pioneer transcription factor in vivo. In addition, PU.1 activity is critical to the development and function of macrophages and lymphocytes, which present osmotically variable environments, and hydrationdependent specificity may represent an important regulatory mechanism in vivo, a hypothesis that finds support in gene expression profiles of primary murine macrophages
Mechanistic Heterogeneity in Site Recognition by the Structurally Homologous DNA-Binding Domains of the ETS-Family Transcription Factors Ets-1 and PU.1
ETS-family transcription factors regulate diverse genes through binding at cognate DNA sites that overlap substantially in sequence. The DNA-binding domains of ETS proteins (ETS domains) are highly conserved structurally, yet share limited amino acid homology. To define the mechanistic implications of sequence diversity within the ETS family, we characterized the thermodynamics and kinetics of DNA site recognition by the ETS domains of Ets-1 and PU.1, which represent the extremes in amino acid divergence among ETS proteins. Even though the two ETS domains bind their optimal sites with similar affinities under physiologic conditions, their nature of site recognition differs strikingly in terms of the role of hydration and counter-ion release. The data suggest two distinct mechanisms wherein Ets-1 follows a “dry” mechanism that rapidly parses sites through electrostatic interactions and direct protein-DNA contacts, while PU.1 utilizes hydration to interrogate sequence-specific sites and form a long-lived complex relative to the Ets-1 counterpart. The kinetic persistence of the high-affinity PU.1/DNA complex may be relevant to an emerging role of PU.1, but not Ets-1, as a pioneer transcription factor in vivo. In addition, PU.1 activity is critical to the development and function of macrophages and lymphocytes, which present osmotically variable environments, and hydrationdependent specificity may represent an important regulatory mechanism in vivo, a hypothesis that finds support in gene expression profiles of primary murine macrophages
Measurements of differential cross sections of Z/gamma*+jets+X events in proton anti-proton collisions at sqrt{s}=1.96 TeV
We present cross section measurements for Z/gamma*+jets+X production,
differential in the transverse momenta of the three leading jets. The data
sample was collected with the D0 detector at the Fermilab Tevatron proton
anti-proton collider at a center-of-mass energy of 1.96 TeV and corresponds to
an integrated luminosity of 1 fb-1. Leading and next-to-leading order
perturbative QCD predictions are compared with the measurements, and agreement
is found within the theoretical and experimental uncertainties. We also make
comparisons with the predictions of four event generators. Two
parton-shower-based generators show significant shape and normalization
differences with respect to the data. In contrast, two generators combining
tree-level matrix elements with a parton shower give a reasonable description
of the the shapes observed in data, but the predicted normalizations show
significant differences with respect to the data, reflecting large scale
uncertainties. For specific choices of scales, the normalizations for either
generator can be made to agree with the measurements.Comment: Published in PLB. 11 pages, 3 figure
Relative rates of B meson decays into psi(2S) and J/psi mesons
We report on a study of the relative rates of B meson decays into psi(2S) and
J/psi mesons using 1.3 fb^-1 of pbar p collisions at sqrt(s) = 1.96 TeV
recorded by the D0 detector operating at the Fermilab Tevatron Collider. We
observe the channels B^0_s -> psi(2S)phi, B^0_s -> J/psi phi, B^+/- -> psi(2S)
K^+/-, and B^+/- -> J/psi K^+/- and we measure the relative branching fractions
for these channels to be B(B^0_s -> psi(2S)phi)/B(B^0_s -> J/psi phi) = 0.55
+/- 0.11 (stat) +/- 0.07 (syst) +/- 0.06 (B), B(B^+/- -> psi(2S) K^+/-)/B(B^+/-
-> J/psi K^+/-) = 0.65 +/- 0.04 (stat) +/- 0.03 (syst) +/- 0.07 (B) where the
final error corresponds to the uncertainty in the J/psi and psi(2S) branching
ratio into two muons.Comment: Published in Phys. Rev. D - Rapid Communicatio
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
- …