126 research outputs found

    Fast Direct Injection Mass-Spectrometric Characterization of Stimuli for Insect Electrophysiology by Proton Transfer Reaction-Time of Flight Mass-Spectrometry (PTR-ToF-MS)

    Get PDF
    Electrophysiological techniques are used in insect neuroscience to measure the response of olfactory neurons to volatile odour stimuli. Widely used systems to deliver an olfactory stimulus to a test insect include airstream guided flow through glass cartridges loaded with a given volatile compound on a sorbent support. Precise measurement of the quantity of compound reaching the sensory organ of the test organism is an urgent task in insect electrophysiology. In this study we evaluated the performances of the recent realised proton transfer reaction-time of flight mass-spectrometry (PTR-ToF-MS) as a fast and selective gas sensor. In particular, we characterised the gas emission from cartridges loaded with a set of volatile compounds belonging to different chemical classes and commonly used in electrophysiological experiments. PTR-ToF-MS allowed a fast monitoring of all investigated compounds with sufficient sensitivity and time resolution. The detection and the quantification of air contaminants and solvent or synthetic standards impurities allowed a precise quantification of the stimulus exiting the cartridge. The outcome of this study was twofold: on one hand we showed that PTR-ToF-MS allows monitoring fast processes with high sensitivity by real time detection of a broad number of compounds; on the other hand we provided a tool to solve an important issue in insect electrophysiology

    Polarized thermal emission by thin metal wires

    Full text link
    We report new measurements of the linear polarization of thermal radiation emitted by incandescent thin tungsten wires, with thicknesses ranging from five to hundred microns. Our data show very good agreement with theoretical predictions, based on Drude-type fits to measured optical properties of tungsten.Comment: 12 pages, 4 encapsulated figures. This new version matches the one published in New. J. Phys.. Improved presentation, more references added, and one new figure include

    A mechanism for biogenic production and emission of MEK from MVK decoupled from isoprene biosynthesis

    Get PDF
    Methyl ethyl ketone (MEK) is an important compound in atmospheric chemistry. While attention has been paid mostly to anthropogenic sources of MEK, recently it has been shown that biogenic sources are globally as important as anthropogenic ones. However, the origin of biogenic MEK has yet to be completely elucidated. We present the full mechanism by which within-plant transformation of methyl vinyl ketone (MVK) and, to a minor extent, of 2-butanol and 3-buten-2-ol, is a source of biogenic MEK. Such transformation is observed in red oak for both exogenous MVK, taken up from the atmosphere, and endogenous MVK generated within a plant when it experiences stress (e.g. heat stress). Endogenous MVK emitted by plants is typically explained by within-plant oxidation of isoprene caused by oxidative stress. In this study we show that MVK and MEK emissions caused by heat stress are not related to isoprene in isoprene-emitting plants, implying that the massive carbon investment that plants commit to isoprene production is not explained by a direct antioxidant role. The presented mechanism can be important for inclusion in plant emission and in plant–atmosphere interaction model

    Multiclass methods in the analysis of metabolomic datasets: the example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS

    Get PDF
    Multiclass sample classification and marker selection are cutting-edge problems in metabolomics. In the present study we address the classification of 14 raspberry cultivars having different levels of gray mold (Botrytis cinerea) susceptibility. We characterized raspberry cultivars by two headspace analysis methods, namely solid-phase microextraction/gas chromatography–mass spectrometry (SPME/GC–MS) and proton transfer reaction-mass spectrometry (PTR-MS). Given the high number of classes, advanced data mining methods are necessary. Random Forest (RF), Penalized Discriminant Analysis (PDA), Discriminant Partial Least Squares (dPLS) and Support Vector Machine (SVM) have been employed for cultivar classification and Random Forest-Recursive Feature Elimination (RF-RFE) has been used to perform feature selection. In particular the most important GC–MS and PTR-MS variables related to gray mold susceptibility of the selected raspberry cultivars have been investigated. Moving from GC–MS profiling to the more rapid and less invasive PTR-MS fingerprinting leads to a cultivar characterization which is still related to the corresponding Botrytis susceptibility level and therefore marker identification is still possible.Fil: Cappellin, Luca. Fondazione Edmund Mach. Research and Innovation Centre; ItaliaFil: Aprea, Eugenio. Fondazione Edmund Mach. Research and Innovation Centre; ItaliaFil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Centro Internacional Franco Argentino de Ciencias de la InformaciĂłn y Sistemas; ArgentinaFil: Romano, Andrea. Fondazione Edmund Mach. Research and Innovation Centre; ItaliaFil: Gasperi, Flavia. Fondazione Edmund Mach. Research and Innovation Centre; ItaliaFil: Biasioli, Franco. Fondazione Edmund Mach. Research and Innovation Centre; Itali

    Microbial community structure in vineyard soils across altitudinal gradients and in different seasons

    Get PDF
    Microbial communities living in nine vineyards distributed over three altitudinal transects were studied over 2 years. Fungal and bacterial community dynamics were explored using automated ribosomal intergenic spacer analysis (ARISA) and by determining bacterial cells and fungal colony-forming units (CFUs). Moreover, extensive chemical and physical analyses of the soils were carried out. Multivariate analyses demonstrated that bacterial and fungal communities are affected by altitude, which acts as a complex physicochemical gradient. In fact, soil moisture, Al, Mg, Mn and clay content are changing with altitude and influencing the bacterial genetic structure, while in the case of fungi, soil moisture, B and clay content are found to be the main drivers of the community. Moreover, other exchangeable cations and heavy metals, not correlating with altitude, are involved in the ordination of the sites, especially Cu. Qualitative ARISA revealed the presence of a stable core microbiome of operational taxonomic units (OTUs) within each transect, which ranged between 57% and 68% of total OTUs in the case of fungi and between 63% and 72% for bacteria. No seasonal effect on the composition of microbial communities was found, demonstrating that bacterial and fungal communities in vineyards are mostly stable over the considered season

    Linking monoterpenes and abiotic stress resistance in grapevines

    Get PDF
    Rising temperatures and ozone levels are among the most striking stressful phenomena of global climate changes, and they threaten plants that are unable to react rapidly and efficiently. Generic responses of plants to stresses include the production of excess reactive oxygen species (ROS). Excessive ROS accumulation can lead to extensive oxidation of important components such as nucleic acids, proteins and lipids which can further exacerbate ROS accumulation leading to programmed cell death. Although most studies on plant antioxidants have focused on non-volatile compounds, volatiles belonging to the isoprenoid family have been implicated in the protection against abiotic stresses, in particular thermal and oxidative stress whose frequency and extent is being exacerbated by ongoing global change and anthropogenic pollution. Historically, research has focused on isoprene, demonstrating that isoprene-emitting plants are more tolerant to ozone exposure and heat stress, reducing ROS accumulation. Yet, evidence is being compiled that shows other volatile isoprenoids may be involved in plant responses against abiotic stresses. Grapevines are not isoprene emitters but some varieties produce other volatile isoprenoids such as monoterpenes. We investigated photosynthesis and emission of volatile organic compounds upon heat stress in two Vitis vinifera cv. ‘Chardonnay’ clones differing only for a mutation in the DXS gene (2-C-methyl-D-erythritol 4-phosphate (MEP) pathway), regulating volatile isoprenoid biosynthesis. We showed that the mutation led to a strong increase in monoterpene emission upon heat stress. At the same time, maximum photochemical quantum yield (Fv/Fm ratio) of PSII was affected by the stress in the non-emitting clone while the monoterpene emitter showed a significant resilience, thus indicating a possible antioxidant role of monoterpenes in grapevine. Future mechanistic studies should focus on unveiling the actual mechanism responsible for such findings

    Electrocautery smoke exposure and efficacy of smoke evacuation systems in minimally invasive and open surgery: a prospective randomized study.

    Get PDF
    Worldwide, health care professionals working in operating rooms (ORs) are exposed to electrocautery smoke on a daily basis. Aims of this study were to determine composition and concentrations of electrocautery smoke in the OR using mass spectrometry. Prospective observational study at a tertiary care academic center, involving 122 surgical procedures of which 84 were 1:1 computer randomized to smoke evacuation system (SES) versus no SES use. Irritating, toxic, carcinogenic and mutagenic VOCs were observed in OR air, with some exceeding permissible exposure limits (OSHA/NIOSH). Mean total concentration of harmful compounds was 272.69 ppb (± 189 ppb) with a maximum total concentration of harmful substances of 8991 ppb (at surgeon level, no SES). Maximum total VOC concentrations were 1.6 ± 1.2 ppm (minimally-invasive surgery) and 2.1 ± 1.5 ppm (open surgery), and total maximum VOC concentrations were 1.8 ± 1.3 ppm at the OR table 'at surgeon level' and 1.4 ± 1.0 ppm 'in OR room air' away from the operating table. Neither difference was statistically significant. In open surgery, SES significantly reduced maximum concentrations of specific VOCs at surgeon level, including aromatics and aldehydes. Our data indicate relevant exposure of health care professionals to volatile organic compounds in the OR. Surgical technique and distance to cautery devices did not significantly reduce exposure. SES reduced exposure to specific harmful VOC's during open surgery.Trial Registration Number: NCT03924206 (clinicaltrials.gov)

    Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2-ol (MBO) in the Atmosphere

    Get PDF
    2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C5H12O6S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM2.5) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM2.5 collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA
    • 

    corecore