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Abstract 

Multiclass sample classification and marker selection are cutting-edge problems in 

metabolomics. In the present study we address the classification of 14 raspberry cultivars having 

different levels of gray mold (Botrytis cinerea) susceptibility. We characterized raspberry 

cultivars by two headspace analysis methods, namely solid-phase microextraction/gas 

chromatography-mass spectrometry (SPME/GC-MS) and proton transfer reaction-mass 

spectrometry (PTR-MS). Given the high number of classes, advanced data mining methods are 

necessary. Random Forest (RF), Penalized Discriminant Analysis (PDA), Discriminant Partial 

Least Squares (dPLS) and Support Vector Machine (SVM) have been employed for cultivar 

classification and Random Forest - Recursive Feature Elimination (RF-RFE) have been used to 

perform feature selection. In particular the most important GC-MS and PTR-MS variables 

related to gray mold susceptibility of the selected raspberry cultivars have been investigated. 

Moving from GC-MS profiling to the more rapid and less invasive PTR-MS fingerprinting leads 

to a cultivar characterization which is still related to the corresponding Botrytis susceptibility 

level and therefore marker identification is still possible. 

 

  

 

 

 

 

 

 

Keywords: proton transfer reaction-mass spectrometry, raspberry (Rubus idaeus), cultivars, 

chemometrics, data mining, marker identification, Botrytis cinerea
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1. Introduction 

Multiclass sample classification and “explanatory” variable selection are cutting-edge 

problems in metabolomics. Often metabolomic studies concentrate on two-class problems, 

considering for instance treated and non-treated samples. In the vision of integration with 

genomic and transcriptomic studies for the investigation of gene functions, metabolomic 

approaches should deal with metabolite differences within a specie by considering populations of 

individuals. A possible first approach could be the evaluation of different cultivars of a single 

species. It is therefore important to develop and test methodologies for addressing multiclass 

problems in this context. Typical datasets from metabolomic experiments have a number of 

variables considerably exceeding the number of measured samples. This poses a serious 

limitation to the strategy that may be used for sample classification or response prediction. For 

example, classical approaches such as Fisher’s Linear Discriminant Analysis or General Linear 

Models are not suitable. A standard method for addressing high dimensional data in food 

metabolomics is unsupervised Principal Component Analysis (PCA) (Jolliffe, 2002). However, 

the performance of PCA may be limited, especially when irrelevant factors dominate the 

variance or when the number of sample classes is very high (Boccard et al., 2010; Jolliffe, 2002). 

Moreover, PCA alone does not provide a quantification of class separation. Addressing 

multiclass separation in metabolomics requires more sophisticated tools, such as machine 

learning methods (Boccard et al., 2010; Pers, Albrechtsen, Holst, Sorensen, & Gerds, 2009; Scott 

et al., 2010). Here we discuss the use of supervised classification methods to actually assess the 

separability of classes. Random Forest (RF) (Breiman, 2001), Penalized Discriminant Analysis 

(PDA) (Wold, Sjöström, & Eriksson, 2001), Discriminant Partial Least Squares (dPLS) (Wold et 

al., 2001) and Support Vector Machine (SVM) (Vapnik, 1995) were applied, as a working 

example, to the identification of raspberry cultivars based on the corresponding volatile profiles.  
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Volatile organic compounds (VOCs) are important secondary metabolites that can be measured 

with non-invasive and non-destructive techniques. Their presence is ubiquitous. They are highly 

studied in plant biology, atmospheric chemistry, breath analysis (Atkinson, 2000; Buszewski, 

Kęsy, Ligor, & Amann, 2007; Tholl et al., 2006). In food industry, volatile compounds are a key 

aspect of the quality of food products and particularly with reference to acceptance by consumers 

(Klee, 2010). GC-MS profiling triggered the arise of metabolomics and it is still unsurpassed in 

compound identification capabilities. However, it suffers from relatively time-consuming 

measurements that render very large studies unpractical. Alternatives are fingerprinting 

techniques that privilege rapidity over analytical information, and have little sample preparation 

and no chromatography (Han, Datla, Chan, & Borchers, 2009). Such techniques, on one hand, 

allow screening a broader number of samples and, on the other hand, minimize the potential 

artefacts due to the extraction and concentration procedures (Han et al., 2009). Moreover, 

machine learning methods on such datasets are often more robust given the larger number of 

measured samples (Han et al., 2009). Here we employ two different headspace techniques: on 

the one hand the well-established GC-MS, on the other hand  an innovative, rapid and non-

invasive (no sample treatment) methodology that allows VOC fingerprinting and measurement 

repetitions during product shelf life. Proton transfer reaction - mass spectrometry (PTR-MS) is a 

hyphenated technique that was developed about two decades ago by Lindinger and co-workers 

(Lindinger, Hansel, & Jordan, 1998). Already in its original versions it was equipped with a 

quadrupole mass analyzer, having about unit mass resolution. It couples high sensitivity (ppbt) 

with a large dynamic range and a fast response time (Lindinger et al., 1998). A complete 

spectrum (from 0 to 200
 
Th) is acquired in a few seconds. Recently PTR-MS has also been 

coupled with time of flight (Jordan et al., 2009) and ion trap (Mielke et al., 2008; Prazeller, 

Palmer, Boscaini, Jobson, & Alexander, 2003) detectors, reaching much higher mass resolutions. 

Compared to GC-MS, PTR-MS reduces measurement time of about 100 times. Moreover, it 

provides simple output data, requiring no pre-processing before statistical analysis. Therefore, a 
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sample can be fingerprinted in a few seconds in total. In this sense, PTR-MS is an ideal tool for 

metabolomic investigations. A pioneer feasibility study in this field have been carried out a few 

years ago by (Granitto et al., 2007). After improving the data analysis methodology (Cappellin, 

Biasioli, et al., 2010; Cappellin et al., 2011), recently, the first application followed (Cappellin, 

Soukoulis, et al., 2012), showing that PTR-MS coupled to a time-of-flight spectrometer and to 

suitable data mining methods is a powerful tool for separating apple cultivars and clones on the 

basis of their VOC emission profiles. Another high-throughput approach has been attempted by 

several other research groups through direct infusion of non-volatile compounds (mainly from 

liquid samples) into mass spectrometers (Favé et al., 2011; Højer-Pedersen, Smedsgaard, & 

Nielsen, 2008; Mattoli et al., 2010; McDougall, Martinussen, & Stewart, 2008) but with scarce 

results mainly due to ion suppression (Annesley, 2003; Sterner, Johnston, Nicol, & Ridge, 2000) 

and very complex spectra.  

 

Raspberry (Rubus idaeus L.) is a member of the Rosaceae family, grown primarily for its edible 

berries. Raspberry fruits are important dietary sources of antioxidant compounds, in particular, 

polyphenols (Kähkönen, Hopia, & Heinonen, 2001), which are renowned for their health 

benefits (Larrosa, González-Sarrías, García-Conesa, Tomás-Barberán, & Espín, 2006). Their 

typical flavor makes these fruits easily recognizable and appreciated not only for their health 

impact (Aprea, Carlin, Giongo, Grisenti, & Gasperi, 2010).  

Literature studies about the volatile emission from raspberry are scarce and mainly concentrate 

on gas chromatographic techniques (Aprea et al., 2010; Guichard & Issanchou, 1983; 

Malowicki, Martin, & Qian, 2008). We already pointed out the viability of the PTR-MS 

approach for in vivo characterization of raspberry products in a recent study involving two 

raspberry cultivars (Aprea, Biasioli, Carlin, Endrizzi, & Gasperi, 2009). In the present work we 

employ GC-MS profiles and PTR-MS fingerprints for the discrimination of 14 raspberry 

cultivars, which are listed in Table 1, via the already mentioned classification methods. 
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Moreover, we employ a multivariate method for the identification of the features (peaks/volatile 

compounds) that are most relevant for the raspberry classification problem. 

 

Another area where modern multiclass methods can replace traditional approaches (as linear 

regression or PLS) is grading problems, i.e. problems in which samples are divided into 

numbered classes that are ordered according to a given measure of similarity. Simple examples 

are qualities or tolerance to stress factors. In our case, differences in volatile emission between 

raspberry cultivars may be related to the diverse level of susceptibility to certain infections. Here 

we concentrate on gray mold caused by Botrytis cinerea  (Elad et al., 2004; Jarvis, 1962). In a 

precedent study on GC-MS data (Aprea et al., 2010) we identified nine compounds which were 

negatively correlated to Botrytis susceptibility. These compounds were mainly monoterpens, 

such as -pinene, -phellandrene, p-cymene, 4-terpineol, and sesquiterpenes, namely trans-

caryophyllene and carophyllene oxyde. Moreover, 2-heptanol, β-damascenone and dehydro-β-

ionone were found. PTR-MS is sensible to monoterpens but cannot separate them, since isobaric 

ions generate superposing signals. Similar remarks hold for susquiterpenes. A key question is in 

fact whether the accuracy of cultivar grading related to Botrytis susceptibility diminishes due to 

this loss of information. It is therefore interesting to assess the relationship between rapid PTR-

MS fingerprints and gray mold susceptibility grading for the considered raspberry cultivars. We 

also use the four machine learning methods named before to grad GC-MS profiles and PTR-MS 

fingerprints into 6 levels of Botrytis susceptibility (also listed in Table 1). The application of 

diverse machine learning techniques could potentially highlight new information about the 

problem at hand (grading based on GC-MS profiles), as was demonstrated in previous works 

(Cappellin, Soukoulis, et al., 2012; Granitto et al., 2007). Again, we apply a multivariate method 

for the identification of the features (peaks/compounds) that are most relevant for this grading. 

We recall from (Aprea et al., 2010), that the degree of Botrytis susceptibility was assessed for 
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each genotype by reporting an index on a scale from 0 to 5, 0 meaning that no fruits showed any 

damage caused by this infection.  

 

In summary, the scope of the present work is twofold. On the one hand we show that supervised 

multivariate techniques, such as machine learning ones, may successfully address different 

multiclass analysis problems in metabolomics: the classification of raspberry cultivars or the 

grading of the same cultivars into levels of Botrytis susceptibility. On the other hand, we discuss 

the advantages of rapid PTR-MS fingerprint of volatiles compared with traditional GC-MS 

profiles. 

 

2. Materials and Methods  

2.1 GC-MS and PTR-MS analysis of raspberry cultivars 

This study is a derivative work following our recent study on GC-MS profiling of raspberry 

cultivars (Aprea et al., 2010). We therefore refer to (Aprea et al., 2010) for a detailed description 

of samples and give only a brief summary here.  

Fruits were produced under standard conditions (Aprea et al., 2010) and collected from the 

Edmund Mach Foundation experimental orchard located in Vigolo Vattaro (Trentino, Italy). In 

order to take into account possible variability two different seasons (2006 and 2007) were 

considered, and three batches for each of the 14 cultivars were collected on three different days 

in each year. The actual number of measured samples depends on the analytical technique. The 

GC-MS dataset obtained for the 14 cultivars has extensively been described in (Aprea et al., 

2010). Briefly, ripe berries (a batch of about 250 g per each variety) were harvested manually, 

placed in plastic container and immediately transported to the laboratory, in ice packs, where 

samples were stored at 4 °C for 1 day before analyses. From 4 to 5 fruits (about 20 g) per each 

variety  where grouped together and used for GC analysis, obtaining six data points for GC 

dataset (one data point X three different sampling days X two years) per each variety. When 
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enough material was available more data points where added. From the same batch, three to six 

fruits (according to availability) per each variety were sampled and individually measured by 

PTR-MS, obtaining at least 20 data points for PTR-MS dataset (data points X three different 

sampling days X two years) per each variety. Only for Josephine variety we collected 15 points 

(over the two years) being the available material scarcer. 

 The SPME/GC-MS analysis procedure has already been described elsewhere (Aprea et al., 

2009).  

 

PTR-MS measurements were conducted using a high sensitivity PTR-MS manufactured by 

Ionicon (IONICON Analytik GmbH, Innsbruck, Austria). The conditions in the drift tube were 

2.04 mbar pressure, 520 V drift tube voltage and 50 °C temperature, corresponding to a E/N of 

about 120 Td. The dwell time was set to 0.2 s and the m/z range to 20-240 Th. We chose to 

measure mashed berries and not intact fruits for this study because of superior level of VOC 

emission of the former. A comparison between intact fruit and mashed fruit regarding their PTR-

MS fingerprint can be found in (Aprea et al., 2009). The measuring procedure was set according 

to our previous work (Aprea et al., 2009). A day after harvest, single berry fruits were taken from 

the 4 °C storage space, left at room temperature for 90 min, then gently mashed and placed into a 

sealed glass vessel  (323 mL) equipped with silicon septa on two opposite sides. After 

equilibrating for 60 min at room temperature, the inlet of the PTR-MS was connected by a 1/16’’ 

PTFE tube kept at 70 °C, terminating with a stainless-steel needle to be introduced into one of 

the glass vessel septa. The opposite septum was connected to a 1/4’’ PTFE tube through a second 

stainless-steel needle to allow outdoor air to enter the vessel, thus replacing the headspace air 

that was continuously extracted for 4 min (corresponding to the acquisition of five complete 

spectra) at 10 cm
3
 min

-1
. Special care was devoted to avoid systematic memory effects: replicate 

order was randomized, different glass vessels were used for each sample, the apparatus was 

flushed with outdoor air for 6 min between consecutive measurements. Spectral data were 
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normalized by the primary ion as described in (Lindinger et al., 1998) and employing a constant 

reaction rate coefficient 2·10
-9

cm
3
/s.The systematic error that is introduced in the concentration 

determination for each compound is in most cases below 30% and can be accounted for if the 

actual rate coefficient is available (Cappellin, Karl, et al., 2012; Cappellin, Probst, et al., 2010). 

 

2.2. Statistical analysis 

We analyzed two datasets. The GC-MS dataset consisted of 94 rows, corresponding to the 

measured samples, and 45 columns, each corresponding to an identified compound. The PTR-

MS dataset consisted of 358 rows (samples) and 141 columns, each corresponding to the 

normalized intensity of a PTR peak. The datasets were built to take into account the intra-

seasoning (three different day of sampling spanned over six weeks, see Aprea et al. 2009 for 

more details) and inter-seasoning (two years, Aprea et al. 2010) variability of the fruits, in order 

to build more robust classification models. 

Supervised classification models were built using RF, PDA, dPLS and SVM on both GC-MS 

and PTR-MS datasets. All methods were described in previous works on PTR-MS fingerprints 

analysis (Granitto et al., 2007). In all cases, we used implementations available as free packages 

for the R statistical environment software (R Development Core Team, 2009). To evaluate the 

results of the classification methods we used a leave-one-out (LOO) procedure: we iterated the 

process of leaving a sample out as test set and using the remaining of the data set to fit the 

models. The free parameters of each classifier, such as the C constant of SVM or the number of 

dimensions considered in dPLS, were selected at this step by internal cross validation using only 

the training data set. After that, those models were used to individually classify the sample in the 

independent test batch. We analysed the classification results using confusion matrices, in which 

rows correspond to the true classes and columns to the predicted ones. The diagonal entries of 

the confusion matrix correspond to correct classifications. The results are given in number of 

samples of each cultivar that the classifier assigns to the cultivar given by the column title.  
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Relevant Feature Identification was done using Random Forest - Recursive Feature Elimination 

(RF-RFE), introduced by Granitto et al. (Granitto, Furlanello, Biasioli, & Gasperi, 2006). The 

procedure has two steps. First, RF-RFE is applied separately to each one of the several partitions 

in training and test sets produced by the LOO procedure described previously. The method 

produces an average error curve relating the classification error with the number of 

compounds/peaks used in the model. We use that curve to select a number p of peaks that is as 

low as possible but still yields good discriminant models. In the second step, we select the top p 

compounds/peaks from each run of the RF-RFE. We compute the average number of times that 

each peak is selected in these reduced lists of p discriminant inputs, and keep only the 

compounds/peaks that were selected more often. It is important to note that the output of the 

process is a list of compounds/peaks that are highly relevant to the problem, not the subset that 

produces the lowest classification error. 

 

3. Results and discussion 

3.1 Classification of raspberry cultivars 

 In the present section we aim at presenting the raspberry cultivar multiclass problems addressed 

by the selected data analysis methods on both datasets. 

The confusion matrix reported in Table 2 provides an insight in the classification performance 

provided by RF on the GC-MS dataset. The corresponding average classification error is 0.298, 

meaning that on average about 70% of the samples are assigned to the correct class by the 

model. The generally good prediction performance on the analyzed cultivars entangles a 

significant and robust difference in their VOC profiles. A close look at Table 2 suggests the 

existence of groups of cultivars which are generally confused. This is particularly true in the case 

of Polka VV3-536 and Polka VV5-657. In fact, these two classes correspond to the same cultivar 

(Polka), confirmed by genetic analysis (data not shown) and have been considered separately 

because at the beginning of the harvesting campaign their identity was doubtful. Thus, it does not 
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come as a surprise that the model is not able to distinguish between them and can be seen as a 

sort of validation of the method. Caroline and Heritage are confused in about 17% of the cases. 

In fact, Caroline is genetically close to Heritage, being a crossing between Heritage and Geo-1 

(Aprea et al. 2010). The discriminate model is not able to correctly classify the Josephine 

samples. Moreover, a marked confusion with Autumn Bliss is evident. Autumn Bliss has a 

complex parentage including Rubus strigosis, R. arcticus, R. occidentalis, and 6 red raspberry 

varieties (US Plant Patent 6597). 

The analogous confusion matrix built on PTR-MS data is reported in Table 3. The corresponding 

average classification error (0.218) is rather lower than in the case of GC-MS, almost 80% 

samples being correctly classified. The expected confusion between Polka VV3-536 and Polka 

VV5-657, even if less marked, is confirmed. The confusion between Heritage and Caroline (in 8 

out of 68 cases, 12%) is found in analogy to the outcome of the analyses on the GC-MS data. 

Contrary to the model built on GC-MS data, RF on PTR-MS data is able to correctly assign 

Josephine sample in 80 % of the cases. Probably this superior performance is mainly related to 

the larger number of Josephine samples, 15 instead of 6, that were analyzed with PTR-MS 

compared to GC-MS. The same reason is probably more generally at the basis of the lower 

prediction errors that multivariate models on PTR-MS fingerprints show compared to the 

corresponding models built on GC-MS data.  

Table 4 reports a comparison between the considered classification methods. In the case of PTR-

MS data, RF shows the lowest prediction errors, followed by PDA; PLS and SVM gives poorer 

results. Previous results on multiclass classification on PTR-MS data (Granitto et al., 2007) also 

showed a good performance of RF on this kind of data. For GC-MS, very similar prediction 

performances are found for the four methods, SVM giving slightly lower prediction errors than 

the other methods in this case. Overall, all four methods show a good performance in both 

problems. Confusion matrices for the other methods are qualitatively similar to those showed in 

Tables 2 and 3 (not shown for lack of space). Table 4 also reports the prediction performances 
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considering only 13 classes, where the two Polka cultivars are grouped together. The results 

improve in all cases, showing that these two mixed and isolated classes correspond in fact to a 

single class. With 13 classes the best prediction errors are reduced to 0.191 for GC-MS and to 

0.156 for PTR-MS. 

 

3.2 Feature selection 

In this section we address the problem of highlighting the most relevant variables (GC-MS 

compounds or PTR-MS peaks) for separating the 14 raspberry classes. As we explained in 

Section 2, feature selection based on RF-RFE proceeds as follows. As a first step we assess the 

behaviour of the mean discrimination error of RF as a function of the number of variables used 

in the model. In order to clarify the procedure, in the case of the GC-MS dataset the results are 

showed in Figure 1. A trade-off between model simplicity and discrimination error is represented 

by 20 variables in this case, from the original total of 45. In a subsequent step we report how 

often each variable is selected among the 20 most relevant peaks by RF, over the 94 LOO RF-

RFE experiments. The results are reported in Table 5. Interestingly, the four variables which are 

always selected within the 20 used to build the models belong to different classes of VOCs, 

namely ketones (2-heptanone), alcohols (2-heptanol), sesquiterpenes (trans-caryophyllene), C13-

norisoprenoids (dehydro--ionone). This suggests that dissecting the VOC emissions of the 

considered raspberry cultivars entangles coarse grain differences in the emission of diverse 

classes of VOCs. Multivariate models provide a useful tool to capture such differences for 

classification purposes and allow the highlighting of VOCs that are most relevant in the 

discrimination.  

Feature selection in the case of PTR-MS data was carried out in an analogous way. We chose to 

keep, again, 20 peaks over the initial 141 peaks measured by PTR-MS (figure not shown in this 

and following experiments). The final results are reported in Figure 2. In this case it is less 

straightforward to draw conclusions. Among the more relevant variables, we find peaks 69, 95 
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and 137, which mainly correspond to monoterpens and their fragmentation (Steeghs, Crespo, & 

Harren, 2007; Tani, Hayward, Hansel, & Hewitt, 2004). The peak at m/z 73 is related to 

aldehyde fragments and 2-butanone and the one at m/z 83 corresponds to a fragment of hexanal 

(Aprea et al., 2009). m/z 41 is a general fragment. In analogy to the case of GC-MS, VOCs 

belonging to very different classes are important for differentiating the studied raspberry 

cultivars. Note that RF-RFE may include isotopic peaks that entangle the same information, such 

as for instance peak at 137 a.m.u. and its isotope at 138 a.m.u. 

 

3.3 Botrytis susceptibility 

The basic question addressed in this paragraph is whether moving from GC-MS profiling of the 

selected raspberry cultivars to their PTR-MS fingerprints leads to a cultivar characterization 

which is still related to the corresponding gray mold susceptibility level; or whether, at the 

contrary, it leads to a loss of information that disrupts that relationship. We recall that in the case 

of the PTR-MS dataset a larger number of samples per each raspberry cultivar have been 

considered, given the highly reduced measurement time required by PTR-MS compared to GC-

MS.  

We first apply a multiclass analysis approach to both GC-MS and PTR-MS data in order to grade 

the samples into classes of equal susceptibility level.  

Table 6 and 7 report the confusion matrices for RF models in the case of GC-MS and PTR-MS 

data, respectively. The corresponding average prediction errors are 0.21 and 0.19, meaning that 

in both datasets the correct Botrytis susceptibility level is assigned by the model to about 80 % of 

the samples. A comparison between the performances of the various classification methods is 

reported in Table 8. In general RF is found to reliably provide good results. In fact, RF 

(prediction error 0.19) outperforms all other methods in the case of the PTR-MS, the other 

methods showing poorer results. For the GC-MS dataset RF (prediction error 0.21), PDA (0.20) 

and SVM (0.22) display similar performances, while PLS gives a higher error (0.27). As this is a 
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grading problem, it is important to consider also the type of error produced by the diverse 

classifiers. Beside classification error, Table 8 also reports the fraction of samples that are 

assigned to a class distant 1 level (denoted as “1 Level”) from the correct one or more than 1 

level (denoted as “> 1 Level”). Interestingly, the results are rather different for the two datasets. 

In fact PTR-MS not only produces better results in general, i.e. lower prediction errors, but also 

the confusion is more related to neighbour classes than in the case of GC-MS data. Again, this 

fact could be probably attributed to the larger number of samples considered for PTR-MS 

investigations. In conclusion both PTR-MS and GC-MS are suitable to addressed the presented 

grading problem and when experiment time is an issue PTR-MS should be preferred. 

 

Variable selection was performed  in order to unveil which variables are more important for 

dissecting gray mold susceptibility in the selected raspberry cultivars.   

Table 9 reports variable selection results for RF–RFE applied to the GC-MS dataset. The four 

most relevant variables, selected in between 80 % and 100 % of the LOO experiments, are -

phellandrene,  p-cymene, 4-terpineol, dehydro--ionone. Consistently, such compounds were 

also found by Aprea et al. (Aprea et al., 2010) using a regression method and Martens’ 

uncertainty test.  

The RF-RFE variables selection in the case of the PTR-MS is reported in Figure 3. Again, 

terpens are among the most relevant features. In fact, the peak at m/z 69 is a common fragment 

of terpens and aldehydes; the peak at m/z 137 is related to monoterpens, m/z 95 is a terpen 

fragment (Aprea et al., 2009). m/z 115 is probably related to 2-heptanone (Aprea et al., 2009). 

Such results are consistent with the findings using GC-MS and suggest that rapid PTR-MS 

fingerprint captures properties of raspberry cultivars that are closely connected to their resistance 

to gray mold susceptibility. The potential role of monoterpens and sesquiterpens in the inibition 

of gray mold infections has been pointed out by many other studies (Bouchra, Achouri, Hassani, 

& Hmamouchi, 2003; Daferera, Ziogas, & Polissiou, 2003; Reddy, Angers, Gosselin, & Arul, 
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1998; Sekine, Sugano, Majid, & Fujii, 2007). For example, (Reddy et al., 1998) highlighted the 

action of essential oils from Thymus Vulgaris against Botrytis Cinerea for strawberry. (Sekine et 

al., 2007) tested the effect of p-cymene and cuminaldehyde vapor phase concentrations on the 

mycelial growth inhibition of phytopathogenic fungi such as Botrytis Cinerea. 

 

4. Conclusions 

In the present study we showed that supervised multivariate techniques, such as machine 

learning ones, may successfully address different multiclass analysis problems in metabolomics. 

We employed modern machine learning methods to analyse diverse aspects of two different 

multiclass problems. First, we classified 14 raspberry cultivars on the basis of their GC-MS 

profiles and PTR-MS fingerprints. Good results were achieved with both techniques, with 

slightly lower classification errors for the PTR-MS dataset, probably because of the larger 

number of analyzed samples. In fact, PTR-MS is a high-throughput technique that allows the 

reduction of measurement time by about 100 times compared to standard GC-MS analysis. 

Groups of cultivars with similar volatile emission were consistently identified using confusion 

matrices. These similarities were related to genetic affinities, varieties sharing common parents 

are generally grouped together. Among the classification methods considered, Random Forest 

showed the best classification performance, in particular for PTR-MS data, but the other methods 

also showed to be effective in both cases. 

Feature selection by RF-RFE allowed the identification of the peaks/compounds that are more 

relevant to these classification problems and suggested that VOCs of very diverse compound 

classes are needed for the full discrimination of the considered raspberry cultivars.  

The same analysis procedure was employed to grade the raspberry cultivars on levels of gray 

mold susceptibility. Models based on the GC-MS dataset and on the PTR-MS one displayed 

similar grading errors but marked differences in the confusion matrices. In fact, in the PTR-MS 

case multivariate model prediction errors were primary based on confusions between raspberries 
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belonging to cultivars with close level of susceptibility, while this did not hold true in the GC-

MS case. Again, RF reliably displayed the best grading capabilities. Several VOCs, in particular 

terpens, were found to be related to the gray mold susceptibility level. We showed that moving 

from GC-MS profiling to PTR-MS fingerprinting leads to a cultivar characterization which is 

still related to the corresponding Botrytis susceptibility level and therefore marker identification 

is still possible. 
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Tables  

Table 1. List of considered raspberry cultivars. Gray mold susceptibility values from (Aprea et 

al., 2010) are also reported.  

 

 Variety 
Botrytis 

susceptibility 

1 Anne 4 

2 Autumn Bliss 3 

3 Caroline 0 

4 Heritage 2 

5 Himbo-top 1 

6 Josephine 0 

7 Opal 3 

8 Pokusa 4 

9 Polana 4 

10 Polesie 5 

11 Polka VV3-536 4 

12 Polka VV5-657 4 

13 Popiel 5 

14 Tulameen 2 
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Table 2. GC-MS profiles. Confusion matrix for the classification by RF of 14 raspberry cultivars considered in this work. 

  11 12 14 10 13 9 7 5 8 3 4 1 2 6 

  
Polka VV3-
536 

Polka VV5-
657 Tulameen Polesie Popiel Polana Opal Himbotop Pokusa Caroline Heritage Anne 

Autumn 
Bliss Josephine 

11 
Polka VV3-
536 1 6 0 0 0 0 0 0 0 0 0 0 0 0 

12 
Polka VV5-
657 6 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 Tulameen 0 0 4 1 1 0 0 0 0 0 1 0 0 0 

10 Polesie 0 0 0 7 1 0 0 0 0 0 0 0 0 0 

13 Popiel 0 0 0 0 8 0 0 0 0 0 0 0 0 0 

9 Polana 0 0 0 0 0 6 0 0 0 0 0 0 0 0 

7 Opal 0 0 0 0 0 0 5 0 1 0 0 0 0 0 

5 Himbotop 0 0 0 0 0 0 0 5 1 0 0 0 0 0 

8 Pokusa 0 0 0 0 0 0 0 1 5 0 0 0 0 0 

3 Caroline 0 0 0 0 0 0 0 0 0 4 2 0 0 0 

4 Heritage 0 0 0 0 0 0 0 0 0 1 10 0 0 0 

1 Anne 0 0 0 0 0 0 0 0 0 0 0 6 0 0 

2 Autumn Bliss 0 0 0 0 0 0 0 0 0 0 0 0 5 1 

6 Josephine 0 0 0 1 0 0 1 1 0 0 0 0 2 0 
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Table 3. PTR-MS fingerprint. Confusion matrix for the classification by RF of 14 raspberry cultivars considered in this work. 

  14 11 12 8 6 9 7 3 4 1 13 10 2 5 

  Tulameen 
Polka VV3-

536 
Polka VV5-

657 Pokusa Josephine Polana Opal Caroline Heritage Anne Popiel Polesie 
Autumn 

Bliss Himbotop 

14 Tulameen 18 0 0 0 0 0 1 0 1 0 0 0 0 0 

11 
Polka VV3-

536 1 14 8 0 0 1 0 0 0 0 2 0 1 0 

12 
Polka VV5-

657 0 11 9 0 0 1 0 0 0 0 0 0 0 0 

8 Pokusa 0 0 1 22 0 1 0 0 0 0 0 0 0 1 

6 Josephine 0 0 0 0 12 1 0 0 1 0 0 0 1 0 

9 Polana 0 1 0 0 0 23 0 0 0 1 0 0 0 0 

7 Opal 0 0 0 0 0 0 22 1 1 0 0 0 0 0 

3 Caroline 0 0 0 0 0 0 1 16 7 0 0 0 0 0 

4 Heritage 0 0 0 0 0 0 1 1 42 0 0 0 0 0 

1 Anne 1 0 0 0 0 0 0 0 0 20 1 0 0 0 

13 Popiel 0 1 1 0 0 0 0 0 1 1 28 0 0 0 

10 Polesie 0 1 1 0 0 0 0 0 2 0 0 22 0 1 

2 Autumn Bliss 1 2 1 0 1 0 0 0 0 0 0 4 9 4 

5 Himbotop 0 0 0 0 0 0 0 0 5 0 0 1 1 23 
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Table 4. Average classification errors for the selected multivariate methods. Results are reported 

for the 14 raspberry cultivar multiclass problem along with those of reduces number of classes 

after merging. See text. 

 

PTR-MS   

 14 classes 13 classes 

RF 0.218 0.156 

PDA 0.271 0.218 

PLS 0.310 0.243 

SVM 0.291 0.246 

mean 0.272 0.216 

   

GC-MS  

 14 classes 13 classes 

RF 0.298 0.191 

PDA 0.277 0.202 

PLS 0.266 0.245 

SVM 0.255 0.170 

mean 0.274 0.202 
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Table 5: GC-MS profiles. Fraction of times that each compound was selected among the 20 more 

discriminant features on RF over LOO replicated experiments, for the 14 class problem. 

  

Compounds Fraction of times selected 

2-heptanone 1.00 

2-heptanol 1.00 

trans-caryophyllene 1.00 

dehydro-β-ionone 1.00 

-phellandrene 0.96 

benzyl alcohol 0.94 

trans-3-methyl-1,3,5-hexatriene 0.92 

ethyl acetate 0.84 

theaspirane B 0.84 

limonene 0.82 

β-phellandrene 0.82 

linalool 0.74 

geraniol 0.74 

-pinene 0.70 

p-cymene 0.70 

caryophyllene oxide 0.70 

3,4-didehydro-β-ionone (t.i.) 0.68 

-damascenone 0.62 

acetic acid 0.60 

-pinene 0.58 

acetoin 0.58 

-myrcene 0.56 

-ionol 0.40 

-ionone 0.38 

hexanal 0.36 

unidentified sesquiterpene 0.36 

acetato di esile 0.28 

hexanoic acid 0.26 

5-ethyl-(3H)-furan-2-one (t.i.) 0.18 

4-terpineol 0.14 

-terpinene 0.10 
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Table 6. GC-MS profile. Confusion matrix for the grading by RF of the raspberry samples into 

the 6 gray mold susceptibility level. The class number represents the susceptibility level. 

 

 0 1 2 3 4 5 

0 3 0 4 4 0 0 

1 0 4 0 2 0 0 

2 1 0 15 0 0 2 

3 0 0 0 12 0 0 

4 0 1 0 1 28 1 

5 0 0 0 0 4 12 

 

 

Table 7. PTR-MS fingerprint. Confusion matrix for the grading by RF of the raspberry samples 

into the 6 gray mold susceptibility level. The class number represents the susceptibility level. 

 0 1 2 3 4 5 

0 26 0 8 3 1 1 

1 0 22 6 0 2 0 

2 1 0 59 2 2 0 

3 2 0 4 25 12 3 

4 0 0 1 0 116 3 

5 0 0 2 2 12 43 

 

 

 

Table 8. Average classification errors for the employed multivariate methods. Results are 

reported for the Botrytis susceptibility multiclass problem for both PTR-MS and GC-MS 

headspace analysis. 

 

 PTR-MS GC-MS 

Method Error 1 Level > 1 Level Error 1 Level > 1 Level 

RF 0.187 0.109 0.078 0.213 0.064 0.149 

PDA 0.282 0.14 0.142 0.202 0.085 0.117 

PLS 0.299 0.142 0.157 0.266 0.117 0.149 

SVM 0.257 0.162 0.095 0.223 0.063 0.160 
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Table 9. GC-MS profiles. Fraction of times that each compound was selected among the 6 more 

discriminant features on RF over LOO replicated experiments, for the 6 class grading problem. 

 

Compounds Fraction of times selected 

dehydro-β-ionone 1.00 

4-terpineol 0.98 

p-cymene 0.91 

-phellandrene 0.89 

trans-caryophyllene 0.65 

unidentified sesquiterpene 0.59 

theaspirane B 0.52 

β-phellandrene 0.22 

-terpinene 0.11 

geraniol 0.09 

2-heptanone 0.04 
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Figure captions 

 

Figure 1. GC-MS profiles. Mean prediction error of Random Forest over the 98 LOO 

replications as a function of the number of variables used in the models during the feature 

selection process. 

 

Figure 2. PTR-MS fingerprints. Fraction of times that each compounds was selected among the 

20 more discriminant features on RF over LOO replicated experiments, for the 14 class problem. 

Higher fraction means more relevant variable for the discriminant process. 

 

Figure 3. PTR-MS fingerprints. Fraction of times that each compound was selected among the 6 

more discriminant feature over LOO replicated experiments for the gray mold susceptibility 

grading problem. Higher fraction means more relevant variable for the discriminant process. 
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Highlights 

 The headspace of 14 raspberry cultivars was analysed 

 Efficient handling of multiclass problems is presented 

 Good sample classification achieved with advanced data mining methods 

 Successful marker selection for both SPME/GC-MS and PTR-MS datasets 

 The level of Botrytis cinerea susceptibility can be predicted from VOC profile 


