107 research outputs found

    Maternal dietary intake of nitrates, nitrites and nitrosamines and selected birth defects in offspring: a case-control study

    Get PDF
    BACKGROUND: Dietary intake of nitrates, nitrites, and nitrosamines can increase the endogenous formation of N-nitroso compounds in the stomach. Results from animal studies suggest that these compounds might be teratogenic. We examined the relationship between maternal dietary intake of nitrates, nitrites (including plant and animal sources as separate groups), and nitrosamines and several types of birth defects in offspring. METHODS: For this population-based case–control study, data from a 58-question food frequency questionnaire, adapted from the short Willett Food Frequency Questionnaire and administered as part of the National Birth Defects Prevention Study (NBDPS), were used to estimate daily intake of dietary nitrates, nitrites, and nitrosamines in a sample of 6544 mothers of infants with neural tube defects (NTD)s, oral clefts (OC)s, or limb deficiencies (LD)s and 6807 mothers of unaffected control infants. Total daily intake of these compounds was divided into quartiles based on the control mother distributions. Odds ratios (OR)s and 95% confidence intervals (CI)s were estimated using logistic regression; estimates were adjusted for maternal daily caloric intake, maternal race-ethnicity, education, dietary folate intake, high fat diet (> 30% of calories from fat), and state of residence. RESULTS: While some unadjusted ORs for NTDS had 95% (CI)s that excluded the null value, none remained significant after adjustment for covariates, and the effect sizes were small (adjusted odds ratios [aOR] <1.12). Similar results were found for OCs and LDs with the exception of animal nitrites and cleft lip with/without cleft palate (aORs and CIs for quartile 4 compared to quartile 1 =1.24; CI=1.05-1.48), animal nitrites and cleft lip (4th quartile aOR=1.32; CI=1.01-1.72), and total nitrite and intercalary LD (4th quartile aOR=4.70; CI=1.23-17.93). CONCLUSIONS: Overall, odds of NTDs, OCs or LDs did not appear to be significantly associated with estimated dietary intake of nitrate, nitrite, and nitrosamines

    Regulation of vascular smooth muscle cell calcification by syndecan-4/FGF-2/PKCα signaling and cross-talk with TGFβ

    Get PDF
    Aims: Vascular calcification is a major cause of morbidity and mortality. Fibroblast growth factor-2 (FGF-2) plays an instructive role in osteogenesis and bone development, but its role in vascular calcification was unknown. Therefore, we investigated the involvement of FGF-2 in vascular calcification and determined the mechanism by which it regulates this process. Methods and Results: We demonstrate that FGF-2 expression is increased in vascular smooth muscle cells (VSMCs) induced to deposit a mineralized matrix by incubation with β-glycerophosphate. FGF-2 is also localized to sites of calcification within human atherosclerotic plaques. The expression of syndecan-4, a heparan sulfate proteoglycan which regulates FGF-2 signaling, is also increased in mineralizing VSMCs and co-localizes with FGF-2 in human calcified atherosclerotic plaques. Exogenous FGF-2 inhibits VSMC mineralization, and this inhibition is reduced when syndecan-4 expression is knocked-down using siRNA. Biochemical inhibition of FGFR signaling using a pan FGFR inhibitor (BGJ398) or knocking-down syndecan-4 expression in VSMCs using siRNA increases VSMC mineralization. These increases are prevented by inhibiting transforming growth factor-β (TGFβ) signaling with SB431542, suggesting cross-talk between FGF-2 and TGFβ signaling is crucial for the regulation of VSMC mineralization. Syndecan-4 can also regulate FGF-2 signaling directly via protein kinase Cα (PKCα) activation. Biochemical inhibition of PKCα activity using Gö6976, or siRNA-mediated suppression of PKCα expression increases VSMC mineralization; this increase is also prevented with SB431542. Finally, the ability of FGF-2 to inhibit VSMC mineralization is reduced when PKCα expression is knocked-down. Conclusion: This is the first demonstration that syndecan-4 promotes FGF-2 signaling, and in turn, suppresses VSMC mineralization by down-regulating TGFβ signaling. Our discoveries that FGF-2 and syndecan-4 expression is increased in mineralizing VSMCs and that PKCα regulates FGF-2 and TGFβ signaling in VSMCs suggests that the syndecan-4/FGF-2/TGFβ signaling axis could represent a new therapeutic target for vascular calcification

    Patient readiness to use internet health resources [abstract]

    No full text
    Background: Nationally, half of patients with chronic disease use the Internet, however little is known about what promotes or inhibits patient use of the Internet for health information. Methods: To learn more about why patients may or may not use Internet health resources, we conducted four focus groups with patients with chronic conditions, grouped by whether or not they used the Internet to search for health information (2 groups users, 2 groups non-users). Patients were recruited from MU Family Medicine clinic waiting rooms, using a brief survey about Internet use. We asked patients about their use of the Internet for personal use and for health information, web sites used to obtain health information, recent searches for health information, and how they used this information to impact their health. Results: Most patients surveyed did use the Internet for health information, including those with a chronic condition. WebMD was a commonly cited source among those who used Internet health resources. Most patients stated they used the Internet to look up health information because it was faster and more convenient than calling a member of their health care team. Additionally, looking up information before their visit enhanced their physician visit. The most commonly stated concerns about the Internet were security and privacy. Conclusions: Use of the Internet for health information among patients with chronic conditions is an accessory to their relationship with their physician; those with less established relationships may rely on the Internet more heavily

    Gene Expression during Vascular Pericyte Differentiation

    No full text

    Amino Acids in the Regulation of Aging and Aging-Related Diseases

    No full text
    Amino acids are the building blocks of protein, but also play important cellular signaling roles. The mechanisms through which altered levels of many amino acids are sensed and the signals transmitted are still largely unknown. Increasing evidence is showing that these signals may influence the aging process. In this regard, methionine restriction appears to be an evolutionary conserved mechanism to delay aging and supplementation with glycine can mimic methionine restriction to extend lifespan in rodents. Tryptophan restriction may also activate specific anti-aging pathways, but it could interfere with cognitive function. With exercise the consumption of dietary branched chain amino acids (BCAAs) may be beneficial in building muscle mass, but high levels of BCAAs as well as tyrosine and phenylalanine in the bloodstream are associated with metabolic disease such as insulin resistance. Individual supplementation or restriction of several different amino acids has shown promise in the treatment of insulin resistance in rodents. Much progress regarding the effects of amino acids on longevity has been made using yeast, nematodes, and fruit flies. Clearly, much more research is needed to understand the signaling pathways activated by amino acid imbalance before efficacious and well-tolerated dietary interventions can be developed for human aging and aging-related disorders. In this review the mechanisms through which altered dietary and cellular levels of the twenty proteogenic amino acids affect aging or aging-related disorders are discussed
    • …
    corecore