273 research outputs found

    Vortical and Wave Modes in 3D Rotating Stratified Flows: Random Large Scale Forcing

    Full text link
    Utilizing an eigenfunction decomposition, we study the growth and spectra of energy in the vortical and wave modes of a 3D rotating stratified fluid as a function of ϵ=f/N\epsilon = f/N. Working in regimes characterized by moderate Burger numbers, i.e. Bu=1/ϵ2<1Bu = 1/\epsilon^2 < 1 or Bu1Bu \ge 1, our results indicate profound change in the character of vortical and wave mode interactions with respect to Bu=1Bu = 1. As with the reference state of ϵ=1\epsilon=1, for ϵ<1\epsilon < 1 the wave mode energy saturates quite quickly and the ensuing forward cascade continues to act as an efficient means of dissipating ageostrophic energy. Further, these saturated spectra steepen as ϵ\epsilon decreases: we see a shift from k1k^{-1} to k5/3k^{-5/3} scaling for kf<k<kdk_f < k < k_d (where kfk_f and kdk_d are the forcing and dissipation scales, respectively). On the other hand, when ϵ>1\epsilon > 1 the wave mode energy never saturates and comes to dominate the total energy in the system. In fact, in a sense the wave modes behave in an asymmetric manner about ϵ=1\epsilon = 1. With regard to the vortical modes, for ϵ1\epsilon \le 1, the signatures of 3D quasigeostrophy are clearly evident. Specifically, we see a k3k^{-3} scaling for kf<k<kdk_f < k < k_d and, in accord with an inverse transfer of energy, the vortical mode energy never saturates but rather increases for all k<kfk < k_f. In contrast, for ϵ>1\epsilon > 1 and increasing, the vortical modes contain a progressively smaller fraction of the total energy indicating that the 3D quasigeostrophic subsystem plays an energetically smaller role in the overall dynamics.Comment: 18 pages, 6 figs. (abbreviated abstract

    Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury.

    Get PDF

    Public Health

    Get PDF
    OBJECTIVE: The objective of this review was to analyse how researchers conducting studies about mobile health applications (MHApps) effectiveness assess the conditions of this effectiveness. STUDY DESIGN: A scoping review according to PRIMSA-ScR checklist. METHODS: We conducted a scoping review of efficacy/effectiveness conditions in high internal validity studies assessing the efficacy of MHApps in changing physical activity behaviours and eating habits. We used the PubMed, Web of Science, SPORTDiscus and PsycINFO databases and processed the review according to the O'Malley and PRISMA-ScR recommendations. We selected studies with high internal validity methodologies (randomised controlled trials, quasi-experimental studies, systematic reviews and meta-analyses), dealing with dietary and/or physical activity behaviours; covering primary, secondary or tertiary prevention and dealing with behaviour change (uptake, maintenance). We excluded articles on MHApps relating to high-level sport and telemedicine. The process for selecting studies followed a set protocol with two authors who independently appraised the studies. RESULTS: Twenty-two articles were finally selected and analysed. We noted that the mechanisms and techniques to support behaviour changes were poorly reported and studied. There was no explanation of how these MHApps work and how they could be transferred or not. Indeed, the main efficacy conditions reported by authors refer to practical aspects of the tools. Moreover, the issue of social inequalities was essentially reduced to access to the technology (the shrinking access divide), and literacy was poorly studied, even though it is an important consideration in digital prevention. All in all, even when they dealt with behaviours, the evaluations were tool-focused rather than intervention-focused and did not allow a comprehensive assessment of MHApps. CONCLUSION: To understand the added value of MHApps in supporting behaviour changes, it seems important to draw on the paradigms relating to health technology assessment considering the characteristics of the technologies and on the evaluation of complex interventions considering the characteristics of prevention. This combined approach may help to clarify how these patient-focused MHApps work and is a condition for improved assessment of MHApps in terms of effectiveness, transferability and scalability

    Valoriser et conserver le pin de Salzmann en France -

    Get PDF
    Cet article fait le point sur l'état des connaissances disponibles sur le pin de Salzmann, dans les domaines écologique, sylvicole et de diversité génétique. Il fait aussi état des risques qui menacent cette ressource française originale, caractéristique de la forêt méditerranéenne et indique quelles sont les stratégies actuelles employées pour sauvegarder et utiliser durablement les populations naturelles

    Turbulence anisotropy and the SO(3) description

    Get PDF
    We study strongly turbulent windtunnel flows with controlled anisotropy. Using a recent formalism based on angular momentum and the irreducible representations of the SO(3) rotation group, we attempt to extract this anisotropy from the angular dependence of second-order structure functions. Our instrumentation allows a measurement of both the separation and the angle dependence of the structure function. In axisymmetric turbulence which has a weak anisotropy, this more extended information produces ambiguous results. In more strongly anisotropic shear turbulence, the SO(3) description enables one to find the anisotropy scaling exponent. The key quality of the SO(3) description is that structure functions are a mixture of algebraic functions of the scale with exponents ordered such that the contribution of anisotropies diminishes at small scales. However, we find that in third-order structure functions of homogeneous shear turbulence the anisotropic contribution is always large and of the same order of magnitude as the isotropic part. Our results concern the minimum instrumentation needed to determine the parameters of the SO(3) description, and raise several questions about its ability to describe the angle dependence of high-order structure functions

    Non-universal behaviour of helical two-dimensional three-component turbulence

    Get PDF
    The dynamics of two-dimensional three-component (2D3C) flows is relevant to describe the long-time evolution of strongly rotating flows and/or of conducting fluids with a strong mean magnetic field. We show that in the presence of a strong helical forcing, the out-of-plane component ceases to behave as a passive advected quantity and develops a nontrivial dynamics which deeply changes its large-scale properties. We show that a small-scale helicity injection correlates the input on the 2D component with the one on the out-of-plane component. As a result, the third component develops a nontrivial energy transfer. The latter is mediated by homochiral triads, confirming the strong 3D nature of the leading dynamical interactions. In conclusion, we show that the out-of-plane component in a 2D3C flow enjoys strong nonuniversal properties as a function of the degree of mirror symmetry of the small-scale forcing

    Pedestrian Injury and Human Behaviour: Observing Road-Rule Violations at High-Incident Intersections

    Get PDF
    Background Human behaviour is an obvious, yet under-studied factor in pedestrian injury. Behavioural interventions that address rule violations by pedestrians and motorists could potentially reduce the frequency of pedestrian injury. In this study, a method was developed to examine road-rule non-compliance by pedestrians and motorists. The purpose of the study was to examine the potential association between violations made by pedestrians and motorists at signalized intersections, and collisions between pedestrians and motor-vehicles. The underlying hypothesis is that high-incident pedestrian intersections are likely to vary with respect to their aetiology, and thus are likely to require individualized interventions – based on the type and rate of pedestrian and motorist violation. Methods High-incident pedestrian injury intersections in Vancouver, Canada were identified using geographic information systems. Road-rule violations by pedestrians and motorists were documented at each incident hotspot by a team of observers at several different time periods during the day. Results Approximately 9,000 pedestrians and 18,000 vehicles were observed in total. In total for all observed intersections, over 2000 (21%) pedestrians committed one of the observed pedestrian road-crossing violations, while approximately 1000 (5.9%) drivers committed one of the observed motorist violations. Great variability in road-rule violations was observed between intersections, and also within intersections at different observation periods. Conclusions Both motorists and pedestrians were frequently observed committing road-rule violations at signalized intersections, suggesting a potential human behavioural contribution to pedestrian injury at the study sites. These results suggest that each intersection may have unique mechanisms that contribute to pedestrian injury, and may require targeted behavioural interventions. The method described in this study provides the basis for understanding the relationship between violations and pedestrian injury risk at urban intersections. Findings could be applied to targeted prevention campaigns designed to reduce the number of pedestrian injuries at signalized intersections

    Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics

    Get PDF
    We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) ows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several special applications in heliophysics and astrophysics, assessing triumphs, challenges,and future directions

    Metabolic characterization of Palatinate German white wines according to sensory attributes, varieties, and vintages using NMR spectroscopy and multivariate data analyses

    Get PDF
    1H NMR (nuclear magnetic resonance spectroscopy) has been used for metabolomic analysis of ‘Riesling’ and ‘Mueller-Thurgau’ white wines from the German Palatinate region. Diverse two-dimensional NMR techniques have been applied for the identification of metabolites, including phenolics. It is shown that sensory analysis correlates with NMR-based metabolic profiles of wine. 1H NMR data in combination with multivariate data analysis methods, like principal component analysis (PCA), partial least squares projections to latent structures (PLS), and bidirectional orthogonal projections to latent structures (O2PLS) analysis, were employed in an attempt to identify the metabolites responsible for the taste of wine, using a non-targeted approach. The high quality wines were characterized by elevated levels of compounds like proline, 2,3-butanediol, malate, quercetin, and catechin. Characterization of wine based on type and vintage was also done using orthogonal projections to latent structures (OPLS) analysis. ‘Riesling’ wines were characterized by higher levels of catechin, caftarate, valine, proline, malate, and citrate whereas compounds like quercetin, resveratrol, gallate, leucine, threonine, succinate, and lactate, were found discriminating for ‘Mueller-Thurgau’. The wines from 2006 vintage were dominated by leucine, phenylalanine, citrate, malate, and phenolics, while valine, proline, alanine, and succinate were predominantly present in the 2007 vintage. Based on these results, it can be postulated the NMR-based metabolomics offers an easy and comprehensive analysis of wine and in combination with multivariate data analyses can be used to investigate the source of the wines and to predict certain sensory aspects of wine
    corecore