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Turbulence anisotropy and the SO„3… description
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We study strongly turbulent windtunnel flows with controlled anisotropy. Using a recent formalism based on
angular momentum and the irreducible representations of the SO~3! rotation group, we attempt to extract this
anisotropy from the angular dependence of second-order structure functions. Our instrumentation allows a
measurement of both the separation and the angle dependence of the structure function. In axisymmetric
turbulence which has a weak anisotropy, this more extended information produces ambiguous results. In more
strongly anisotropic shear turbulence, the SO~3! description enables one to find the anisotropy scaling expo-
nent. The key quality of the SO~3! description is that structure functions are a mixture of algebraic functions
of the scale with exponents ordered such that the contribution of anisotropies diminishes at small scales.
However, we find that in third-order structure functions of homogeneous shear turbulence the anisotropic
contribution is always large and of the same order of magnitude as the isotropic part. Our results concern the
minimum instrumentation needed to determine the parameters of the SO~3! description, and raise several
questions about its ability to describe the angle dependence of high-order structure functions.
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I. INTRODUCTION

Angular momentum theory has provided a new and in
esting way to describe anisotropic turbulence@1,2#. Although
the idea was proposed earlier@3# and expansion of tensoria
quantities using the irreducible representations of the rota
group is well known@4#, the current interest is in scalin
properties of anisotropic turbulence quantities, such that e
irreducible representation is expected to have its own~uni-
versal! scaling exponent. These phenomena become ac
sible in experiments which go beyond the traditional m
surement of a single velocity component at a single poin
strongly turbulent flows@5,6#.

The idea is that the Navier-Stokes equation is invari
under rotations of space, and, therefore, that statistical tu
lence quantities should be expanded preferably in term
the irreducible representations of the rotation group. In
gular momentum theory there is a relation between the va
of the angular momentum and the irreducible representa
of the rotation group, such that a higher angular momen
signifies less symmetry. This provides a way to describe
influence of anisotropy on turbulence by the gradual loss
symmetry of turbulence statistical quantities at increas
length scales, and accordingly, an increasing influence
high angular momentum contributions.

As most turbulent flows in the laboratory are anisotrop
and as it has recently become clear that this anisotropy m
probably remains, even at the smallest scales@7,8#, this new
description of anisotropy is a very significant developm
which deserves a careful experimental test. The goal of
paper is to provide such a test by devising experimental te
niques in turbulent flows which have a controlled anisotro

In order to illustrate this idea, we consider the structu
functions

Gab~r!5^@ua~x1r!2ua~x!#@ub~x1r!2ub~x!#&, ~1!

which involve increments of the velocity componentsua and
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ub over the separation vectorr. The ensemble average
denoted bŷ •••&; homogeneity of the flow implies indepen
dence ofx. Adopting a coordinate system in which we me
sure thex component of the velocity and where the spheri
coordinates (r ,u,f) are defined with respect to thex axis as
polar axis, the angular momentum decomposition of the t
sor, Eq.~1! takes on the following form:

Gxx~r ,u,f!5gl 50~u!r z2
(0)

1gl 52~u,f!r z2
(2)

1•••, ~2!

where the first term is the isotropic contribution and the te
involving g2 is the first anisotropic part, possibly followe
by terms representing higher-order anisotropies. The an
dependent functionsgl are subject to the incompressibilit
constraint which determinesg0(u) upto a constant factor
Parity invariance prevents a contribution withl 51. As is
implied by Eq.~2!, each irreducible part may have its ow
scaling exponent, so thatz2

(0) , z2
(2) , . . . may all be different.

Of course, any tensorial quantity can be expanded in irred
ible components of the rotation group@4#, but the separation
of Gxx into angle-dependent factors which multiply algebra
~scaling! functions ofr is new. Whilstgl(u,f) coincide with
the orthogonal spherical harmonics for a scalar field and
the longitudinal correlations of the velocity field~where the
measured velocity component andr point in the same direc-
tion!, they have a more complicated form in the general ca
However, this form can be readily derived using the we
known tools from angular momentum theory in quantum m
chanics. Often, the irreducible representations are ca
‘‘sectors,’’ with the first term of Eq.~2! belonging to the
isotropic sector, and the second term belonging to the
anisotropic sector.

Unlike the nonrelativistic Schro¨dinger equation which is
linear, the Navier-Stokes equation is nonlinear and the
pansion, Eq.~2!, is only appropriate if the anisotropic con
tributions take the form of small perturbations whose siz
rapidly decrease with increasingl. Accordingly, the expo-
©2003 The American Physical Society03-1
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nents associated with increasing angular momentum are
dered hierarchically,z2

(0),z2
(2),¯, such that the highes

angular momentum contribution decays quickest at decr
ing scaler.

Two special forms ofGab(r) are the transverse structu
functionG2

T(r )[Gaa(reb), with aÞb andea being the unit
vector in thea direction, and the longitudinal structure fun
tion GL(r )[Gaa(rea). With a5x andb5y we pointed out
that the high-order longitudinal and transverse struct
functions may have different scaling exponents@9,10#. This
was also found in other experiments@11# and direct numeri-
cal simulations@12–14#, but Shen and Warhaft@15# have
suggested that this difference disappears at large Reyn
numbers. It must be realized that a dependence of the sc
exponent on the relative orientation ofr and the direction of
the measured velocity component isincompatiblewith the
description@Eq. ~2!# in terms of irreducible components. I
this description, it is neither the longitudinal nor the tran
verse structure functions that carry the pure scaling,
rather the different terms of the angular momentum deco
position Eq.~2!. However, the irreducible constituents of th
longitudinal and transverse structure functions may cons
such that atfinite Reynolds numbers, the longitudinal an
transverse structure functions may have differentapparent
scaling exponents, with their mixed character only emerg
at Reynolds numbers that are unreachable in the experim
An example of this was given in Ref.@16#.

In the SO~3! picture, all structure functionsGab(r) em-
body a mixture of scalings, with the pure algebraic behav
carried by the irreducible components. In other words, if i
possible to single out these components, a much impro
scaling behavior of measured structure functions would
the result in cases where the large-scale anisotropies in
the inertial-range scales, that is, at small Reynolds num
@17#. Such an approach can only be followed in numeri
simulations where the full vector information about the v
locity field is available.

In case of the longitudinal structure functionsG2
L(r ), the

SO~3! representationsgl(u,f) coincide with the spherica
harmonics, where its argumentsu,f are the angles of the
vector r in G2

L(r )5^@ r̂•(u(x1r)2u(x)#2&. By projecting
onto the spherical harmonics Biferale and Toschi@18# have
singled out the isotropic component of longitudinal structu
functions of a numerically computed velocity field and de
onstrated its superior scaling behavior compared to the o
nary, unfiltered second-order structure function. Howev
the computed flow was driven strongly inhomogeneou
with homogeneity recovered only in a statistical sense. F
ther, Biferale and Toschi@18# do not report scaling behavio
of the ordinary third-order longitudinal structure functio
and the Reynolds number was not known, possibly beca
of the used hyperviscosity.

Experiments can reach much larger Reynolds numb
than numerical simulations and can average over many la
eddy turnover times. At large Reynolds numbers, there
clear separation between the inertial-range scales and
scales which are invaded by anisotropies, which may fac
tate the analysis. Also, experiments allow a precise con
04630
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over homogeneity and anisotropy using active@7# or passive
grids to stir the flow. However, experiments have limit
access to the velocity field: hot-wire velocimetry provid
only a few velocity components in a few spatial points.
the context of experiments, therefore, the question is if
mixture of scaling exponents of Eq.~2! gives a better de-
scription of measured structure functions than a pure a
braic behavior. Such a mixture then must exhibit the angu
dependence that is characteristic of the SO~3! description.

The functional form of the irreducible componen
gl(u,f), l>2, depends on the symmetry of the experime
and is determined by parameters that are specific for the
of flow. With decreasing symmetry, the number of para
eters increases. However, the value of theexponentsz2

( l ) is
expected to be universal. For example, a simple dimensio
argument@19# predictsz2

(2)54/3 for the first anisotropy ex-
ponent.

In an experiment one must try to determine both the u
versal exponents and the nonuniversal constants that pa
etrize the angle dependentg2(u,f). The large number of
adjustable parameters is a problem: With so much freedo
is often not difficult to obtain a better fit of the data and
becomes unclear if an improved fit is the consequence of
specific anisotropy description Eq.~2!, or of the large num-
ber of adjustable constants. In this paper we will design
periments such as to actuallyminimizethe number of con-
stants, and simultaneouslymaximize the experimental
information.

II. ANGULAR DEPENDENCE
OF STRUCTURE FUNCTIONS

Clearly, experiments must now measure both ther and the
angle (u,f) dependence of the structure functions, whi
calls for more sophisticated setups than the common sin
point, single-velocity component experiments that give
cess to the longitudinal structure function only. Usin
multiple-velocity probes that measure a single velocity co
ponent, Fig. 1 sketches two ways to measure bothr and u
dependence of the structure function. The idea is to comb
true spatial separations with temporal delays, which in t
translate into spatial separations using the Taylor frozen
bulence hypothesis. In the first manner@method ~i!#, ex-
ploited in Refs.@2,6#, both r and u dependencies are mea
sured simultaneously by time-delaying the signal of one
the two probes used. If the frozen turbulence hypothe
holds, the angleu is given by u(r )5sin21(r0 /r), with r 2

5r 0
21(Ut)2, whereU is the mean velocity andt is the time

delay.
By using arrays of many probes@method~ii !#, Fig. 1~b!

illustrates that it is possible to measure ther and u depen-
dence of structure functions separately. Obviously, met
~i! provides quite limited information about the structu
function. The information gained about the anisotropic v
locity field in method~ii ! is one of the key points of this
paper.

Using straightforward angular momentum theo
~Clebsch-Gordan algebra! @2#, it is possible to arrive at ex-
plicit expressions for the irreducible componentsgl(u,f) of
3-2
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TURBULENCE ANISOTROPY AND THE SO~3! DESCRIPTION PHYSICAL REVIEW E68, 046303 ~2003!
the second-order structure function. Here, it suffices to
the result for flows with decreasing symmetry. We will sp
cialize the formulas for our case, in which we measure thx
component of the fluctuating velocity in axisymmetric a
shear turbulence. In both cases the flow is assumed hom
neous. The used coordinate system is sketched in Fig. 2

In the case ofaxisymmetric turbulence, all statistica
quantities are invariant under rotations around thex axis, that
is, Gxx(r ,u,f) becomes independent off,

Gxx~r ,u!5g0~u!r z2
(0)

1g2~u!r z2
(2)

5c0$21z2
(0)sin2u%r z2

(0)
1$d11d2cos~2u!

1k~d1 ,d2 ,z2
(2)!cos~4u!%r z2

(2)
, ~3!

with the functionk determined by axisymmetry,

FIG. 1. Probe geometries for measuring bothr and u depen-
dence of structure functions.~a! With two probes,r and u are re-
lated through the time delayt, u5tan21(r 0 /Ut), r 25r 0

2

1(Ut)2. ~b! With ten probes,r spans 45 discrete values, andu can
be varied independently by selecting time delayst i5yi /(Utanu).

FIG. 2. Coordinate system: velocity incrementsu12u2 are mea-
sured over a vectorr with the measured velocity component poin
ing in theex direction.
04630
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k~d1 ,d2 ,z2
(2)!5

@22z2
(2)#@z2

(2)d11~41z2
(2)!d2#

@z2
(2)171A17#@z2

(2)172A17#
.

As is well known, the isotropic part involves sin2u, with the
explicit form of g0(u) set by incompressibility.

In the case of shear turbulence, the velocity gradi
points in they direction. In this case we have the reflectio
symmetryGxx(r ,u,f)5Gxx(r ,u,p2f). At f50 the par-
tial symmetryGxx(r ,u,f50)5Gxx(r ,p2u,f50) leads to
the following expression for the anisotropic contribution:

g2~u!5d11d2cos~2u!1d3cos~4u!, ~4!

where the parametersd1,2 are different from the parameter
with the same name in Eq.~3!. The loss of axisymmetry
results in an extra free parameterd3. At azimuthal angles
away fromf50, the anisotropic contribution acquires a
other free parameter and becomes

g2~u!5d11d2cos~2u!1d3cos~4u!

1d4@~1212z2
(2)!sin~2u!1~22z2

(2)!sin~4u!#,

~5!

whereas thef dependence is given by

g2~f!5d51d6cos~2f!, ~6!

where in Eqs.~5! and ~6! the parametersd1,2,3 are different
from the parameters with the same name in earlier exp
sions. Because Eqs.~5! and ~6! involve disjunct sets of pa-
rameters, it is not possible to reconstruct thef dependence
of g2 at a given angleu from its u dependence at a givenf.
Equations~4! and ~5! are completely equivalent to those
Ref. @6#, but we point out that Eq.~13! of Ref. @6# is in error
because it contains a redundant fit parameter.

Summarizing, in case of axisymmetric turbulence the
are five adjustable parameters: two exponentsz2

(0) and z2
(2)

and three prefactorsc0 ,d1 ,d2. For shear turbulence there
an extra prefactor atf50 and a total of seven adjustab
parameters for other azimuthal angles. The art is to de
mine these parameters by fitting the appropriate equatio
an experimentally measured structure function.

Rather than finding the best~in a least squares sense! set
of parameters, which is a daunting task in seven-dimensio
parameter space, we will look for the set of nonuniver
parametersc0 , d1 , . . . that provide the best fit for given
values of the universal exponentsz2

(0) and z2
(2) . First, the

value of the isotropic exponentz2
(0) is guessed, for example

from the transverse structure functionG2
T . Next, the anisot-

ropy exponentz2
(2) is scanned over a range of values. At ea

z2
(2) we then seek for the nonuniversal constantsc0 , d1 , . . .

which minimize the sum of squared differencesx2 between
measurement and fit. The value of this minimum depends
z2

(2) , and at somez2
(2) it will be smallest. This distinction

between universal and nonuniversal parameters was insp
by Aradet al. and Kurienet al. @2,6# who followed the same
procedure.
3-3
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TABLE I. Characteristic parameters of the used turbulent flows:~1! axisymmetric turbulence and~2!
homogeneous shear turbulence. The mean velocity isU with urms5^u2&1/2 being the rms size of the fluctua

tions. For the definition of the other characteristic quantities the rms derivative velocityu̇rms

[^(du/dt)2&1/2 is used. For the mean energy dissipatione the isotropic value is taken,e515nu̇rms
2U22 with

n the kinematic viscosity. The Kolmogorov scale ish5(n3/e)1/4 and the Taylor microscale isl

5Uurms/u̇rms with the associated Reynolds numberRel5lurms/n. The integral length scale is defined i
terms of the correlation function of velocity fluctuationsL5*0

`^u(x)u(x1r )&xdr/^u2&. The total integration
time Tint of the experiment is expressed in integral times byUTint /L.

Configuration U ~m/s! urms ~m/s! Rel h ~m! L ~m! UTint /L

1 10.6 1.14 560 1.631024 0.17 53105

2 11.4 1.15 600 1.631024 0.19 33105
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The key question then is if the anisotropy description
measured structure functions enables one to detect the i
ence of large-scale anisotropy on the shape of the struc
function, as characterized by its scaling exponentz2

(2) . From
dimensional arguments@19# we expectz2

(2)54/3, but the
precise value may be influenced by intermittency.

An alternative approach to detect large-scale anisotrop
to measure correlations of the velocity field that vanish
actly in the isotropic case; these correlations and their an
lar dependence are then determined by anisotropy al
Mixed structure functionsGxb(rex) were measured in a tur
bulent boundary layer by Kurien and Sreenivasan@20# using
an interpolation scheme to extract an anisotropy expon
Although such a flow is not only anisotropic but also high
nonhomogeneous, Kurien and Sreenivasan@20# found an an-
isotropic scaling exponentz2

(2)'1.21, which is close to the
dimensional estimatez2

(2)54/3. The procedures used als
allowed one to find scaling exponents of higher-order mix
structure functions. Similar values of these exponents w
also found in homogeneous shear turbulence@21#.

In this paper we will analyze experiments involving tw
turbulent flows with decreasing symmetry. In the first ca
the flow has axisymmetry, in the second case we cons
homogeneous shear turbulence. In both cases turbulence
created in a windtunnel using special grids. These grids w
designed to preserve the homogeneity of the flow: the SO~3!
description deals withhomogeneousanisotropic flows. This
severe constraint limited the Reynolds number toRl'600.
The flow parameters are listed in Table I.

In the following two sections we will describe the tw
experiments and the analysis of second-order structure f
tions using the SO~3! formulas Eqs.~3!–~6!. We will then
consider the angle dependence of third- and seventh-o
structure functions in homogeneous shear turbulence.

III. AXISYMMETRIC TURBULENCE

In view of the SO~3! picture, it is attractive to study axi
symmetric turbulence as it involves the simplest express
for the angle-dependent structure functions with the sma
number of adjustable parameters. The experimental setu
sketched in Fig. 3 and the flow characteristics are sum
rized in Table I. Axisymmetric turbulence is generated in t
wake of a circularly symmetric target-shaped grid~diameter
04630
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0.7 m! placed in a recirculating windtunnel. Velocity fluctua
tions u(y) are measured 2 m downstream using an array o
hot-wire sensors. In all experiments reported here we u
probes with a sensitive length of 200mm. They were oper-
ated by a computerized constant temperature anemom
The velocity signals were low pass filtered at 10 kHz a
sampled synchronously at 20 kHz which is approximat
twice the Kolmogorov frequency. Each experiment was p
ceded by a calibration procedure in which the voltage to
velocity conversion for each probe was measured usin
calibrated nozzle. The resulting ten calibration tables w
updated regularly during the experiment to allow for
~small! temperature increase of the air in our recirculati
windtunnel. Statistical convergence was assured by coll
ing data for several hours~at least 33105 large eddy turn-
over times!.

By time delaying the signals from the wires, theu depen-
dence of structure functions can be measured. By rotating
entire array along thex axis, the anglef was changed. It was

FIG. 3. Axisymmetric turbulence is generated with a targ
shaped grid. The orientation of the vectorr over which velocity
increments are measured is determined by the anglesu andf. The
azimuthal anglef is varied by physically rotating the probe arra
the polar angleu is adjusted by varying the time delay betwee
samples, as illustrated in Fig. 1. The characteristics of the flow
listed in Table I. The grid is not drawn to scale.
3-4
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TURBULENCE ANISOTROPY AND THE SO~3! DESCRIPTION PHYSICAL REVIEW E68, 046303 ~2003!
verified that all results were independent off, thus proving
the axisymmetry of the flow.

Figure 4 shows the second-order transverse and long
dinal structure functions. The longitudinal structure functi
is the result of single-probe measurements, translating t
delays into spatial separations using Taylor’s hypothesis.
homogeneous flow the longitudinal structure functions m
sured at the different locationsyi , i 51, . . . ,10 of theprobes
should all be the same.

There are several circumstances which may affect ho
geneity: the turbulence properties may depend ony, or the
probe arrayitself may influence the measurement in an inh
mogeneous fashion. The position of the ten probes was
sen so as to space the 45 distances between them as clo
possible to exponential. This causes the probes to crowd
the center two probes which have the smallest separation
this location one might suspect an influence of the den
detection array on the measured turbulence properties.
this is not the case is demonstrated in Fig. 5 which shows
frequency spectraE( f ,yi) at each probe positionyi ; they
appear to be virtually independent ofyi . A further proof of
the homogeneity of the measured velocity fluctuations is p
vided by the transverse structure function itself.

We recall that the transverse structure functionG2
T is mea-

sured using the discrete distances between probe pairs i
array. Each point of the transverse structure function in F
4, therefore, corresponds to a distancer 5yi2yj between
different probe pairs that are at different locationsyi , yj .
Homogeneity shows in the smoothness of the dependenc
the separationr of the transverse structure function. O
course, since the different points of the curve correspon
different probe pairs whose characteristics may be slig

FIG. 4. Longitudinal and transverse structure functions in a
symmetric turbulence. Dots connected by lines, transverseG2

T(r );
line, longitudinalG2

L(r ). The dotted lines indicate the extent of th
inertial range. Inset: anisotropy ratioR(r ) computed from the lon-
gitudinal and transverse structure functions according to Eq.~7!.
The lower curve assumed the mean velocity as the convection
locity in the Taylor frozen turbulence hypothesis; the upper cu
follows the definition of@6#.
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different, the noise in the measured transverse structure f
tions is larger than in the longitudinal structure functions. W
conclude that our flow is axisymmetric and homogeneous
that the simplest SO~3! decomposition formula Eq.~3! ap-
plies which has only three adjustable nonuniversal consta

The anisotropy of our flow can be learned from the sa
faction of the isotropy relation between measured longitu
nal G2

L and transverseG2
T structure functions. The relation i

such that the anisotropy ratioR(r ), which is defined as

R~r ![G2
T~r !Y H G2

L1
r

2

dG2
L

dr J , ~7!

should be identically equal to 1. Satisfaction ofR(r )51 can
be tested even if scaling behavior is absent. In case of a
algebraic behavior of one of the structure functions,R(r )
51 trivially implies the same algebraic behavior of the oth
one. In the context of the SO(3) description, where anis
ropy is reflected in a mixed algebraic behavior,R(r )51 can
accidentally be satisfied in the anisotropic axisymme
case, but only if a very special relation exists between
parametersz2

(0) , z2
(2) , c0 , d1, andd2 of Eq. ~3!, which we

deem extremely improbable.
So far, experimental studies involving Eq.~7! have used

cross wires which measure theu andv velocity components
in a point while for both components Taylor’s hypothesis
invoked to translate time into space. This is not so for
results shown in Fig. 4, where the transverse structure fu
tion uses true spatial separations. Another difference with
cross-wire test is that in our experimental setupR(r ) be-
comes trivially 1 at integral scales since bothG2

T(r→`)
5G2

L(r→`)52^u2&. Therefore,R(r ) is only sensitive to
anisotropy at inertial-range scales. The inset of Fig. 4 sho
that R(r ) indeed shows a maximum at large scales, withR
51 only reached atr /h*23103, which is larger than the
size of the probe array.

A point of discussion raised in Ref.@6# is whether the true
spatial separationsr in the transverse structure functionGT

-

e-
e

FIG. 5. Energy spectra of all ten probes of the probe arr
which spans a separation of 0.24 m.
3-5
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STAICU, VORSELAARS, AND van de WATER PHYSICAL REVIEW E68, 046303 ~2003!
should be related to time-delayed separationsr 5Ut of the
longitudinal G2

L using the mean velocityU as the frozen
turbulence convection velocity. For their atmospheric bou
ary layer flow they instead proposed to take@U2

1(3u)2#1/2 as convection velocity. Because their fluctuati
velocity was large (u/U'0.25), it raised the convection ve
locity by 25%. In our caseu/U'0.1, and as the inset of Fig
4 shows, the effect on the measured anisotropy is sm
What is perhaps important is that the Taylor hypothesis
increasingly challenged at high frequencies~small scales!
@22#. This is responsible for the slight increase ofR(r ) at
small scales (r /h'20). The apparent increase of the anis
ropy at small scales is inconsequential for the analysis of
large-scale anisotropy.

The question now is if we can detect the influence
anisotropy at large scales with help of the SO~3! machinery
Eq. ~2!, in particular whether we can recover the anisotro
scaling exponentz2

(2)54/3 from the behavior ofG2(r ,u) at
larger. First, we measured the angle dependence ofG2 using
only two probes spaced atr 0 /h5100, which is centered in
the inertial ranger /hP@30,800#. The experiment and fit o
Eq. ~3! are shown in Fig. 6~a!. For the fit, we fixedz2

(0) and
determined the constantsc0 ,d1 ,d2 and the exponentz2

(2) in a
least squares procedure. The exponentz2

(0) varies fromz2
(0)

50.70 toz2
(0)'0.74 for the transverse and the longitudin

case, respectively. We selectz2
(0)50.72, and discuss the in

fluence of this particular choice below. Strikingly, the isotr

pic contributionr z2
(0)

g0(u) alone does not provide a satisfy
ing fit, and it is necessary to include the anisotrop
contribution. We find that the best fit is reached ifz2

(2)

51.5, which is close to the value 4/3 following from dime
sional arguments. The almost perfect fit corresponds t
well-defined minimum of the sum of squared differencesx2

as shown in Fig. 6~b! where we determined the minimum
squared error over a range ofz2

(2) . As we do not have an
independent estimate of the error of measured structure f
tions, we normalize the minimumx2 to 1 by multiplication
with an appropriate factor.

These findings completely agree with those of Aradet al.
and Kurienet al. @2,6# who followed a similar procedure in
the atmospheric boundary layer and concluded thatz2

(2)

51.39. However, repeating the experiment with differe
probe separationsr 0 confuses the issue. As Fig. 6~b! illus-
trates, the value ofz2

(2) that optimizes the fit depend
strongly onr 0; it is large (z2

(2)51.8) at smallr 0 and small
(z2

(2)51.2) at larger 0, with both values ofr 0 in the inertial
range. However, the valuer 0 /h5100 is preferred as it pro
vides the best defined minimum. Such a preference can
haps be justified by the observation that the angleu varies
most rapidly nearr 5r 0, so thatr 0 needs to be chosen we
inside the inertial range. In principle, a two-point measu
ment would suffice to determine the parameters of the SO~3!
description, but now the experimental information comes
a single function with a coupled dependence onr andu. This
single function must then be used to determine four unkno
parameters. The dependence of the outcome onr 0 indicates
that this information is not enough.
04630
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The information obtained on theu dependence of the
structure function is greatly enhanced if the number of
locity probes is made large enough such that structure fu
tions at u590° can be made of pure spatial separatio
Measured structure functionsG2(r ,u) for the pure longitu-
dinal arrangementu50 using time delays only, foru
515°, 35°, 55° using a combination of space and time
lays, and for the transverse arrangement are shown in Fi
To more clearly expose the quality of the fits, we plot t
structure functions compensated by the self-similar beha

FIG. 6. ~a! Full line: measuredG2(r ,u) using two probes sepa
rated atr 0 /h5100, so thatu(r )5sin21(r0 /r). Dash-dotted line: fit
that only includes isotropic part involvingg0(u) @Eq. ~3!#. Dashed
line: fit including both isotropic and anisotropic part. Dotted line
extent of inertial range.~b! Minimum of the sum of squared differ
ences between measurement and fit for variation of the nonun
sal parametersc0 , d1, and d2 at r 0 /h550, 100, and 190. The
values ofz2

(2) that give the best fit are indicated by the open ba
The sum of squared diffences is normalized such that its minim
is always atx251.
3-6
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TURBULENCE ANISOTROPY AND THE SO~3! DESCRIPTION PHYSICAL REVIEW E68, 046303 ~2003!
G2(r ,u);r 2/3. This procedure amplifies the noise in theu
.0 multiprobe structure functions, which is caused by slig
differences in probe characteristics. Because the longitud
structure function atu50 is made from time delays only
this curve is smooth. However, the consistency between
single-probe and multiprobe measurements shows in
closeness of the curves atu50 andu515°.

We have attempted to simultaneously fit the measu
structure functions atu50°, 35°, 55°, and 90° using Eq.~3!
with a single set of parameters; the result is shown in Fig
In correspondence with Fig. 6, the fit range@r 1 ,r 2(u)# was
taken fromr 1 /h5100 to valuesr 2(u) whereG2(r ,u) have
reached nearly their asymptotic valuej2^u2&, with j50.9.
The small-r dissipative range behavior was modeled by
placing the isotropic part in Eq.~3! by

c0H h~r !1sin2~u!
r

2

dh

dr J
with h~r !5r 2~11~r /r c!

2!(z2
(0)

22)/2 ~8!

andr c /h512.6. The functionh(r ) @23,24# models the tran-
sition from dissipative scales,h(r );r 2, to inertial-range

scales,h(r );r z2
(0)

. This choice improves the appearance
the fit, but it is completely inconsequential for our concl
sions.

Using a single set of parameters it is possible to obta
satisfactory fit ofGxx(r ,u) over the indicated fit range and a
all u, except perhaps atu50 where the large-scale behavi
of the longitudinal structure function is not represented pr
erly. However, the variation withu is mostly due to the

FIG. 7. Full lines measuredr 22/3G2(r ,u) at u50, 15°, 35°,
55°, and 90°. Dashed lines: simultaneous fit of Eq.~3! to the data
at u50°, 35°, 55°, and 90°. The asymptote of the structure fu
tions 2̂ u2& is indicated. Inset: minimum of the sum of squar
differences between measurement and fit for variation of the
nonuniversal parametersc0 , d1, andd2. A minimum is reached at
z2

(2)'2.1. The sum of squared differences is normalized such
its minimum is always atx251.
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~trivial! u dependence ofg0. At r /h5103 the relative size of

the anisotropic part,r z2
(2)

2z2
(0)

g2(u)/g0(0), ranges only from
20.21 atu5p/2 to 20.22 atu50. Although such slight
dependence onu could still be compatible with the SO~3!
description, it complicates the measurement of the ani
ropy scaling exponentz2

(2) .
Also in this case, we find a poorly defined minimum

the sum of squared differencesx2 at a value of the anisot
ropy exponentz2

(2)'2.1 which is much larger than the d
mensional predictionz2

(2)54/3. A serious problem is that th
position of the minimum strongly depends on the assum
value of z2

(0) , it varies fromz2
(2)52.5 at z2

(0)50.70 to z2
(2)

52.0 atz2
(0)50.74.

Trivially, all second-order structure functions reach
large r the asymptoteG2(r ,u)→2^u2&; this asymptote is
also shown in Fig. 7. The SO~3! description applies to ther
dependence of the structure functionbeforethis asymptote is
reached, a dependence which varies in a characteristic
with the angle. This is a subtle point because we always
g2(u),0, which may also represent the trivial rise to sa
ration of the structure function.

We conclude that for our axisymmetric turbulence t
two-probe experiment gives insufficient information to te
the SO~3! description. The more extended information that
contained in a fullr ,u dependence of the structure functio
shows that in this case an anisotropy exponentz2

(2) cannot be
determined unambiguously.

IV. SHEAR TURBULENCE

While the anisotropy of the axisymmetric turbulence
Sec. III may be modest, a much stronger angle depende
was created in homogeneous shear turbulence. Hom
neous shear turbulence has a linear variation of the m
flow velocity U in the shear direction, a constant fluctuatio
velocity u, and an energy spectrum that does not depend
y. It is the simplest possible anisotropic turbulent flo
whose large-scale anisotropy is characterized by a sin
number: the shear rateS5dU/dy. Whilst the anisotropy is
stronger, the SO~3! description now also has more adjustab
parameters due to the loss of symmetry.

To generate a uniform mean velocity gradient we us
grid ~dimension 0.930.7 m2) whosey dependent solidity is
tuned to preserve a constant turbulence intensityu through-
out most of the windtunnel height. The experimental
rangement is sketched in Fig. 8. With the mean flowU(y) in
thex direction, the shear points in the transversey direction.
The challenge of the experiment is to maintain the homo
neity of the flow: the SO~3! theory@Eq. ~2!# describes anisot-
ropy but presupposes homogeneity. That this challeng
met in our experiments is illustrated in Fig. 9~a! which shows
the variation of the mean flow and the turbulence intens
with y. It is seen that the mean velocity profile is linear, wi
a small variation of the turbulence intensity over the pro
array. Further evidence of homogeneity is provided by F
9~b!, which shows that the energy spectra, and thus
second-order quantities, such as the integral scaleL, do not
vary significantly withy.
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STAICU, VORSELAARS, AND van de WATER PHYSICAL REVIEW E68, 046303 ~2003!
In this flow, the structure function depends both onu and
f, and we measured first theu dependence atf5p/2. Due
to the absence of both axisymmetry and the partialu sym-
metry atf50, the general expression Eq.~5! has to be used
with five nonuniversal parameters. The result of a fit of t
formula to the measured structure function, using a single
of parameters, is shown in Fig. 10. In comparison to the c
of axisymmetric turbulence~Fig. 7! the larger number of
parameters gives a better fit at anglesu close to the trans-
versep/2, but in both cases angles close to the longitudi
ones,u50, are not represented well by the fit. Surprising
the best fit now occurs atz2

(2)'1.3 which is very close to the
dimensional predictionz2

(2)54/3. Contrary to the axisym
metric flow, the assumed value ofz2

(0) now hardly affects the
minimum z2

(2) .
In contrast to the experiment in axisymmetric turbulen

the anisotropic contribution shows a significant variati
with the angleu. At r /h5103 the relative size of the aniso

tropic part,r z2
(2)

2z2
(0)

g2(u)/g0(0), nowranges from20.36 at
u5p/2 to 20.28 atu50. It is precisely this angular varia
tion that is the hallmark of the SO~3! description, and which
must be used to determine the anisotropy scaling expon
That we now find a value ofz2

(2) which is closer to the
dimensional value 4/3 may be due to the larger variation w
u of the anisotropic contribution.

For the axisymmetric turbulent flow we have verified th
there is nof dependence, as it should. For shear turbulen
instead, a clearf dependence of the second-order struct
function is expected, given the strong asymmetry of the fl
We therefore measured the structure functionG2(r ,u
5p/2,f) as a function off by rotating the probe array
According to Eq.~6!, the SO~3! analysis predicts af depen-
dence

Gxx~r ,f!5g0r z2
(0)

1D~f!r z2
(2)

, ~9!

with D(f)5d51d6cos(2f), and the variation withf of the
anisotropic contribution would be largest if the azimuth
angle is rotated fromf50 ~perpendicular to the shear! to

FIG. 8. Homogeneous shear is generated using a grid with v
able solidity. The mean velocity increases in they direction, but is
does not vary withz. The ~effective! orientation of the probe array
is determined by the anglesu andf.
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f5p/2 ~along the shear!. This of course also follows from
the r-reflection symmetry of the second-order structure fu
tion.

Compensated structure functionsr 22/3G2(r ,u5p/2,f)
for these two angles are shown in Fig. 11. Let us empha
that these measurements do not involve invocation of T
lor’s frozen turbulence hypothesis. A disadvantage of
physical rotation, however, is that the curves have lar
fluctuations at larger due to a slight inhomogeneity of th
flow. Instead of extracting the anisotropy exponentz2

(2) , we
set z2

(2)54/3 and extract the angle dependenceD(f) from
the experiment. As is shown in Fig. 11, the found angu

ri-

FIG. 9. Homogeneous shear turbulence.~a! Open circles, mean
velocity U; closed dots, rms fluctuationsu at x/H55.1 behind the
shear generating grid, whereH50.9 m is the height of the tunnel
Near the lower wall the turbulent boundary layer marks the end
the homogeneous shear region. The shear strength isdU/dy
55.95 s21. ~b! Variation of the spectra over the extent~0.24 m! of
the probe array. The pointy50 indicates the center of the prob
array; it is aligned with the arrow, the center of the shear profile
frame ~a!.
3-8



-

b
a

the

ear
e
gle
on-
ac-

y
iso-
city
o is

x-

-
he
the

es

q.
nc-
n

n

t.

be
ight
re-

ur
ed
fiv

ed

ea

lls
,

TURBULENCE ANISOTROPY AND THE SO~3! DESCRIPTION PHYSICAL REVIEW E68, 046303 ~2003!
dependence ofD(f) is indeed very close to that of cos(2f).
Clearly, the reflection symmetry ofG2 dictates af depen-
dence such as cos(2nf), but it is remarkable that the mea
suredD(f) is actually so close to cos(2f).

Representations of the structure function that resem
Eq. ~9!, but which are not identical to it, also produce

FIG. 10. Full lines measuredr 22/3G2(r ,u) at u50, 15°, 35°,
50°, and 90°. Dashed lines: simultaneous fit of Eq.~5! to the data
at u50°, 15°, 35°, 50°, and 90°. The asymptote of the struct
functions 2̂ u2& is indicated. Inset: minimum the of sum of squar
differences between measurement and fit for variation of the
nonuniversal parametersc0 , d1 , d2 , d3, and d4. A minimum is
reached atz2

(2)'1.3. The sum of squared differences is normaliz
such that its minimum is always atx251.

FIG. 11. Azimuthal dependence of structure functions in sh
turbulence. Full lines: measuredr 22/3G2(r ,u,f) at u5p/2 andf
50°, and 90°. Dashed lines: fits of Eq.~9!. For clarity, the curves
at f50° have been multiplied by a factor 1.2. Inset: open ba
functionD(f) determined from fits at sevenf angles, dashed line
fit of d51d6cos(2f).
04630
le

similar f dependence. For example, we have modeled
manner in whichG2(r ,f) reaches its large-r asymptote
2^u2& as

G2~r ,f!5arz2
(0)

@11r /L~f!#2z2
(2)

,

and found a similar cos(2f) dependence ofL(f) over ther
dynamical range of the experiment.

In conclusion, for our experiment on homogeneous sh
turbulence, the SO~3! machinery appears to work: We wer
able to extract the anisotropy exponent from the polar an
dependence of the second-order structure function. C
versely, we have shown that its azimuthal dependence is
cording to the first anisotropic sector.

V. HIGHER-ORDER STRUCTURE FUNCTIONS

As was realized earlier@20#, a better approach to quantif
anisotropy may be to measure structure functions whose
tropic part vanishes. Since we measure only one velo
component, the lowest-order tensorial quantity that does s
the third-order structure function

Gaaa~r![^@ua~x1r!2ua~x!#3&, ~10!

with a5x in our case. This tensor quantity can also be e
panded in irreducible components.

Gaaa5g0
3~u!r 1g2

3~u,f!r z3
(2)

1•••, ~11!

where the superscript 3 ong0,2 now indicates the order. How
ever, while incompressibility of the velocity field reduces t
number of unknown parameters of the anisotropic part of
second-orderstructure functiong2

2 to just a few, no such
reduction forg2

3 is possible, unless the statistical properti
of the driving force~the velocity-pressure correlations! are
known. The well-known von Ka´rmán-Howarth-Kolmogorov
equation fixes the isotropic component

g0
3~u!52 4

5 ecos~u!. ~12!

In the case of isotropic turbulence, a relation similar to E
~7! exists for the third-order angle-dependent structure fu
tion Gxxx(r ,u) in terms of the longitudinal structure functio
G3

L(r )[Gxxx(r ,u50):

Gxxx~r ,u!5 1
2 cosuH @11cos2~u!#G3

L~r !

1sin2~u!r
d

dr
G3

L~r !J . ~13!

In axisymmetric turbulence it follows from reflectio
symmetry thatGxxx50 atu5p/2, which trivially applies to
the isotropic part Eq.~12!, but also to the anisotropic par
Using multiprobe arrays, it is possible to measureGxxx at
small anglesu, but it poses extreme requirements on pro
calibration as pairs of probes must now be sensitive to sl
asymmetries between positive and negative velocity inc
ments.
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STAICU, VORSELAARS, AND van de WATER PHYSICAL REVIEW E68, 046303 ~2003!
Figure 12 shows the longitudinalG3
L(r ) which was mea-

sured using time delays andGxxx(r ,u) at u535°, together
with the isotropic prediction Eq.~13!. Clearly, it is not pos-
sible in axisymmetric turbulence to distinguish the measu
curve atu535° from the isotropic prediction and it is there
fore not possible to deduce information about an anisotro
contribution. Third-order transverse structure functions w
also measured in@20# in ~inhomogeneous! boundary-layer
turbulence. However, in this case the structure function w
computed from the absolute values of the velocity inc
ments^uDuu3&, for which a decomposition Eq.~11! is very
troublesome as it can never involve the proper isotropic p

In shear turbulence, the reflection symmetryu↔p2u is
broken atfÞ0 and the anisotropic part is no longer bou
to vanish atu5p/2. Angle-dependent third-order structu
functions are shown in Fig. 13~a! for anglesf5p/2 andu
50 ~longitudinal!, u515°,u535°, andu560°. In this case
the isotropic contribution vanishes atu5p/2, and only the
anisotropic contributions remain. If higher-order anisotrop
with l .2 are absent, the scaling atu5p/2 would be pure
and the scaling at smaller angles would be a mixture. T
scaling exponent atu5p/2 can then be identified withz3

(2) ;
we find z3

(2)'1.4, which is significantly larger than the iso
tropic exponentz3

(0)51, and is rather close to the dimen
sional predictionz3

(2)55/3. If the SO~3! description applies,
the scaling of the longitudinal structure function would be
mixture of both exponents

G3
L52 4

5 er 1brz3
(2)

, ~14!

with z3
(2)'1.4. Figure 13~b! illustrates that it is possible to

find a factorb.0 to describe the behavior of the longitud
nal structure function at large scales. The dissipation ratee in

FIG. 12. Third-order structure function measured in axisymm
ric turbulence. Full line: longitudinal structure functionG3

L at u
50. Dots connected by lines,Gxxx(r ,u) at u535°; dash-dotted
line, Gxxx(r ,u) computed fromG3

L using the isotropy relation Eq
~13!.
04630
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Eq. ~14! was estimated from the longitudinal derivativee
515n^(]u/]x)2&, with n being the kinematic viscosity. The
admixture of the anisotropic scaling in the longitudinal stru
ture functionG3

L may explain why its apparent scaling exp
nent is smaller than 1, and why the apparent inertial rang
G3

L is smaller than that of the transverse structure function
u5p/2.

The factorb in Eq. ~14! is an unknown function ofu and
f which can only be specified in a very general sense in
SO~3! description, using many undetermined parameters
can, however, in any case be concluded thatb(u,f50) must
change sign betweenu50 and u5p/2. This implies that
there is an intermediate angle where the scaling is pure

t-

FIG. 13. Third-order structure function measured in homo
neous shear turbulence.~a! Full lines:Gxxx(r ,u) at u50° ~longitu-
dinal!, u515°, u535°, u560°, andu590°. Dashed line: fit of

Gxxx(r ,u590°);r z3
(2)

, with z3
(2)'1.4. ~b! Full line: third-order

longitudinal structure function. Dashed lines:Gxxx(r ,u) at u
515°, u535°, andu560° computed from the longitudinal on
using Eq.~13!. The Kolmogorov predictionGxxx(r ,u50)52

4
5 er

is indicated by K41. Dash-dotted line: fit of Eq.~14!.
3-10
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TURBULENCE ANISOTROPY AND THE SO~3! DESCRIPTION PHYSICAL REVIEW E68, 046303 ~2003!
tropic, with scaling exponent 1. From Fig. 13~a! we estimate
this magic angleum to beum'15°.

Apparently, the anisotropic contribution toG3
L (u50) is

small. For largeru the isotropic contribution vanishes a
cording to Eq.~13!, in a way that is illustrated in Fig. 13. A
the same time, the anisotropic contribution increas
changes sign atu5um , and according to Fig. 13~a!, grows
larger than the isotropic part atu50. Therefore, the ampli-
tude of theu dependence of the anisotropicg2

3(u) is larger
than that of the isotropicg0

3(u). This is contrary to the SO~3!
picture, where we would expect the anisotropic part to
~much! smaller than the isotropic part.

In principle, low-order structure functions are affected
intermittency. This was already observed in the value of
scaling exponentz2

(0) which in both flows significantly ex-
ceeds the self-similar value 2/3. As intermittency effects
stronger for high orders, we show the angle dependenc
G7(x)(r ,u) in Fig. 14. Contrary to the third orderGxxx(r ,u),
the scaling exponent is almost independent of the angle~it
varied from 2.1 for u50 to 2.2 for u5p/2). For r /h
&500, a satisfactory fit could be obtained throu
G7(x)(r ,u);@0.915.2 sin2(u)#r2.1, where we emphasize th
dependence on thedoubleangle through sin2(u). Such a fit is
possible because of the relatively small noise inG7(x)(r ,u).
Although its order is higher, the noise in the seventh-or
structure function is smaller than that in the third-order o
of Fig. 13.

We conclude that for higher orders theu dependence o
structure functions is strongly influenced by intermitten
such that intermittency amplifies anisotropy. For example
was noticed by us that, unlike the longitudinal exponents,
transverse ones tend to a limiting value at very large ord
@25#. Another example is the observation that the hyp
skewnessG7(x)(h)/G2

T(h)7/2 does not decay with increasin

FIG. 14. Seventh-order structure function measured in homo
neous shear turbulence. Full lines:G7(x)(r ,u) at u50° ~longitudi-
nal!, u515°, u535°, u560°, andu590°. Dashed lines: fit of
G7(x)(r ,u);2@0.915.2 sin2(u)#r2.1.
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Reynolds number@7#. A challenge is to design quantities fo
unfolding the effects of intermittency and anisotropy. In th
respect Ref.@8# shows that anisotropy is still observed at t
highest Reynolds numbers obtainable in the laboratory, e
when intermittency effects are accounted for. For the sec
order structure functions studied in this paper, isotropy w
eventually be restored at the smallest scales asr a, with a
5z2

(2)2z2
(0).0.

VI. SUMMARY AND CONCLUSION

The key idea of the SO~3! description is that the observe
imprint of anisotropy due to stirring at large scales is dep
dent on the geometric arrangement of the measuremen
some angles, the effects of anisotropy are larger than at
ers. The expected angular dependence can be worked o
detail using the formalism of angular momentum theory a
can be used in experiments to unfold the effect of anisotr
on measured second-order structure functions.

In this paper we have described several experimental
cedures to unfold structure functions using this angular
pendence. Second-order structure functions of a single ve
ity component contain a mixture of isotropic and anisotro
contributions, which makes it difficult to extract the scalin
of the anisotropic contribution.

We conclude that it is essential to use measurement
the separate angle and distance dependence of structure
tions. For axisymmetric turbulence, the apparent success
simple two-probe arrangement where distance and angle
formation are intertwined could not be reproduced wh
considering the information present in a multiprobe config
ration.

At this point we disagree with the conclusions of Ara
et al., Kurien et al., and Kurien and Sreenivasan@5,6,26#,
who analyzed boundary-layer turbulence using a two-pr
arrangement. There are several possible explanations for
discrepancy. First, the Reynolds number in the atmosph
boundary layer that was studied in Refs.@5,6,26# is much
larger than ours, which may help to separate the effects
large-scale anisotropy on inertial-range scaling. Second,
dependence on the separationr 0 of the probes was no
checked in Refs.@5,6,26#. Finally, Refs.@5,6,26# apply the
axisymmetric formulas, while boundary-layer turbulence
not axisymmetric The authors argue that in the two-pro
method the large separationsr ~which are most affected by
anisotropy! come with smallu. At small u the functional
forms of the axisymmetric angular dependence Eq.~3! and
the general formula Eq.~5! are not very different, so that th
axisymmetric formula would still be applicable. This aga
illustrates the necessity of a separate measurement of
angleu and r dependence of the structure function.

For the more strongly anisotropic shear turbulence
SO~3! machinery to analyze second-order structure functi
appears to work, at least our data are consistent with
dimensional value 4/3 of the anisotropic scaling expon
z2

(2) and the dependence on the azimuthal anglef agrees
with the predicted cos(2f) angular dependence of the anis
tropic sector.

In connection with thez2
(2)54/3 value of the anisotropy

e-
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STAICU, VORSELAARS, AND van de WATER PHYSICAL REVIEW E68, 046303 ~2003!
scaling exponent, a paper by Lumley is often cited@19#. This
paper discusses an elaborate scaling theory where the sc
of the anisotropy corrections follows from the requireme
that the structure function be analytic in the shear rateS.
However, this only predicts the value 4/3 for thecross-
structure functionsGxy andGzy which are proportional toS.
On the other hand,Gxx would then involveS2, which dic-
tates the scaling of the anisotropic part to bez2

(2)52.
For shear turbulence it was possible to isolate the an

tropic contribution in the third-order structure function,
which turned out to be of the same order of magnitude as
isotropic part. We do not know how to reconcile this findin
with the SO~3! picture, where an anisotropic contribution is
correction. Further theoretical work on an SO~3! description
of higher-order structure functions is clearly needed. F
higher-order structure functions, the effects of intermitten
become dominant, and an intriguing question is the rela
between intermittency and anisotropy.

One could object that the anisotropy of the flows that
considered in this paper is small, and that consequently
anisotropy content of the structure functions is too smal
be able to detect the anisotropy scaling exponent. While
may be so for the axisymmetric flow, this is definitely not t
case for the homogeneous shear experiment where tu
lence properties strongly depend on the direction. In b
experiments we strived for homogeneity of the flow, whi
compromised the achieved anisotropy. Better control of
turbulence, for example through active grids may help
al
th
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create homogeneous flows that are more strongly anisotr
@7#.

Another objection may be that our Reynolds numbers
too small so that there is not a clear separation betw
inertial-range and integral scales. However, it is genera
believed that precisely these moderate Reynolds num
would benefit most of the SO~3! description. We emphasiz
that success of this approach was concluded in the cas
direct numerical simulations which had a very small Reyn
number@17,18#.

We conclude that great care is needed to extract the
isotropy according to the SO~3! picture from experiments on
strong turbulence. Before we can decide the same succe
in numerical simulations@17,18#, more experiments are
needed. These experiments must involve arrays of pro
that can also measure several velocity components. In
way it should be possible to measure the angular depend
of only the anisotropic sector of the second-order struct
function.
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