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Turbulence anisotropy and the SG3) description
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We study strongly turbulent windtunnel flows with controlled anisotropy. Using a recent formalism based on
angular momentum and the irreducible representations of tH8)3@ation group, we attempt to extract this
anisotropy from the angular dependence of second-order structure functions. Our instrumentation allows a
measurement of both the separation and the angle dependence of the structure function. In axisymmetric
turbulence which has a weak anisotropy, this more extended information produces ambiguous results. In more
strongly anisotropic shear turbulence, the($Qlescription enables one to find the anisotropy scaling expo-
nent. The key quality of the S@) description is that structure functions are a mixture of algebraic functions
of the scale with exponents ordered such that the contribution of anisotropies diminishes at small scales.
However, we find that in third-order structure functions of homogeneous shear turbulence the anisotropic
contribution is always large and of the same order of magnitude as the isotropic part. Our results concern the
minimum instrumentation needed to determine the parameters of t@) 86scription, and raise several
guestions about its ability to describe the angle dependence of high-order structure functions.
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l. INTRODUCTION ug over the separation vectsr The ensemble average is
_ ~denoted by - - -); homogeneity of the flow implies indepen-
Angular momentum theory has provided a new and intergence ofx. Adopting a coordinate system in which we mea-
esting way to describe anisotropic turbulefte]. Although  syre thex component of the velocity and where the spherical
the idea was proposed earlid@] and expansion of tensorial coordinates(, 9, 4) are defined with respect to theaxis as
quantities using the irreducible representations of the rotatiopo|ar axis, the angular momentum decomposition of the ten-

group is well known[4], the current interest is in scaling sor, Eq.(1) takes on the following form:
properties of anisotropic turbulence quantities, such that each

irreducible representation is expected to have its owmi- (0) )
versa) scaling exponent. These phenomena become acces- Cxx(F+0,¢)=0i-o( O)re2 +g—p(0,p)r% +---, (2
sible in experiments which go beyond the traditional mea-
surement of a single velocity component at a single point invhere the first term is the isotropic contribution and the term
strongly turbulent flows5,6]. involving g, is the first anisotropic part, possibly followed
The idea is that the Navier-Stokes equation is invarianby terms representing higher-order anisotropies. The angle-
under rotations of space, and, therefore, that statistical turbudependent functiong, are subject to the incompressibility
lence quantities should be expanded preferably in terms afonstraint which determinegq(6) upto a constant factor.
the irreducible representations of the rotation group. In anParity invariance prevents a contribution witkr1. As is
gular momentum theory there is a relation between the valuenplied by Eq.(2), each irreducible part may have its own
of the angular momentum and the irreducible representatioscaling exponent, so that®, 52, ... may all be different.
of the rotation group, such that a higher angular momentundf course, any tensorial quantity can be expanded in irreduc-
signifies less symmetry. This provides a way to describe théble components of the rotation gro{)], but the separation
influence of anisotropy on turbulence by the gradual loss obf G,, into angle-dependent factors which multiply algebraic
symmetry of turbulence statistical quantities at increasingscaling functions ofr is new. Whilstg, (6, ¢) coincide with
length scales, and accordingly, an increasing influence ahe orthogonal spherical harmonics for a scalar field and for
high angular momentum contributions. the longitudinal correlations of the velocity fie{dhere the
As most turbulent flows in the laboratory are anisotropic,measured velocity component anghoint in the same direc-
and as it has recently become clear that this anisotropy mosibn), they have a more complicated form in the general case.
probably remains, even at the smallest scffe8], this new  However, this form can be readily derived using the well-
description of anisotropy is a very significant developmentknown tools from angular momentum theory in quantum me-
which deserves a careful experimental test. The goal of thighanics. Often, the irreducible representations are called
paper is to provide such a test by devising experimental techsectors,” with the first term of Eq.(2) belonging to the
nigues in turbulent flows which have a controlled aniSOII'Opy.isotropic sector, and the second term belonging to the first
In order to illustrate this idea, we consider the structureanisotropic sector.
functions Unlike the nonrelativistic Schinger equation which is
linear, the Navier-Stokes equation is nonlinear and the ex-
Gop(N=([Up(X+1)—uu(X)[ug(x+r)—ug(x)]), (1)  pansion, Eq(2), is only appropriate if the anisotropic con-
tributions take the form of small perturbations whose sizes
which involve increments of the velocity componentsand  rapidly decrease with increasirlg Accordingly, the expo-
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nents associated with increasing angular momentum are oover homogeneity and anisotropy using ac{ivéor passive
dered hierarchicallyz$"< ¢{?)<---, such that the highest grids to stir the flow. However, experiments have limited
angular momentum contribution decays quickest at decreagccess to the velocity field: hot-wire velocimetry provides
ing scaler. only a few velocity components in a few spatial points. In
Two special forms ofG,4(r) are the transverse structure the context of experiments, therefore, the question is if the
functionG;(r)EGw(reﬁ), with a# 8 ande, being the unit mixture of scaling exponents of ER) gives a better de-

vector in thea direction, and the longitudinal structure func- E?giztlt?gheolfli?regsuucrﬁi f;:;g?ﬁhfg:?gggfetgﬁgi tathpeugan allj?:r'
tion GH(r)=G,,(re,). With a=x andB=y we pointed out : 9

. S dependence that is characteristic of the(®@escription.
that the high-order longitudinal and transverse structure The functional form of the irreducible components

functions may have different scaling exponef@sl0]. This 9i1(6.4), 1=2, depends on the symmetry of the experiment

was also found in other experimentsl] and direct numeri- 5,4 is determined by parameters that are specific for the kind

cal simulations[12—-14, but Shen and Warhaftl5] have  of fiow, With decreasing symmetry, the number of param-

suggested that this difference disappears at large Reynoldsa s increases. However, the value of (maonentsg(z') is

numbers. It must be realized that a dependence of the scalingsected to be universal. For example, a simple dimensional

exponent on the relgtlve orlentatlon”loand thg dlreptlon of argument 19] predicts§‘22)=4/3 for the first anisotropy ex-

the measured velocity componentircompatiblewith the ponent.

description[Eq. (2)] in terms of irreducible components. In ~ |5 an experiment one must try to determine both the uni-

this description, it is neither the longitudinal nor the trans-yersal exponents and the nonuniversal constants that param-

verse structure functions that carry the pure scaling, bugtrize the angle dependegi(6,¢). The large number of

rather the different terms of the angular momentum decomagjustable parameters is a problem: With so much freedom it

position Eq.(2). However, the irreducible constituents of the s often not difficult to obtain a better fit of the data and it

longitudinal and transverse structure functions may conspirgecomes unclear if an improved fit is the consequence of the

such that affinite Reynolds numbers, the longitudinal and specific anisotropy description E¢®), or of the large num-

transverse structure functions may have differapparent  per of adjustable constants. In this paper we will design ex-

scaling exponents, with their mixed character only emergingyeriments such as to actualiginimizethe number of con-

at Reynolds numbers that are unreachable in the experimen§iants, and simultaneouslynaximize the experimental

An example of this was given in Reff16]. information.
In the SA3) picture, all structure function&,4(r) em-

body a mixture of scalings, with the pure algebraic behavior

carried by the irreducible components. In other words, if it is

possible to single out these components, a much improved

scaling behavior of measured structure functions would be Clearly, experiments must now measure bothrthed the

the result in cases where the large-scale anisotropies invagggle (9, ¢) dependence of the structure functions, which

the inertial-range scales, that is, at small Reynolds numbergalls for more sophisticated setups than the common single

[17]. Such an approach can only be followed in numericalpoint, single-velocity component experiments that give ac-

simulations where the full vector information about the Ve-cess to the |0ngitudina| structure function 0n|y_ Using

locity field is available. multiple-velocity probes that measure a single velocity com-
In case of the longitudinal structure functioﬁ‘é(r), the  ponent, Fig. 1 sketches two ways to measure tognd 6

SO(3) representationg)(#,¢) coincide with the spherical dependence of the structure function. The idea is to combine

harmonics, where its arguments¢ are the angles of the true spatial separations with temporal delays, which in turn

vector r in Gg(r)=<[f- (u(x+r)—u(x)]?). By projecting translate into spatial separations using the Taylor frozen tur-

onto the spherical harmonics Biferale and Todd] have  bulence hypothesis. In the first mannnethod (i)], ex-

singled out the isotropic component of longitudinal structureploited in Refs.[2,6], bothr and # dependencies are mea-

functions of a numerically computed velocity field and dem-sured simultaneously by time-delaying the signal of one of

onstrated its superior scaling behavior compared to the ordthe two probes used. If the frozen turbulence hypothesis

. . H H —oin—1 H 2

nary, unfiltered second-order structure function. Howeverholds, the anglef is given by 6(r)=sin"*(ro/r), with r

the computed flow was driven strongly inhomogeneously=r3+(U7)?, whereU is the mean velocity and is the time

with homogeneity recovered only in a statistical sense. Furdelay.

ther, Biferale and ToscHil8] do not report scaling behavior By using arrays of many probdsethod(ii)], Fig. 1(b)

of the ordinary third-order longitudinal structure function, illustrates that it is possible to measure thand 6 depen-

and the Reynolds number was not known, possibly becausdence of structure functions separately. Obviously, method

of the used hyperviscosity. (i) provides quite limited information about the structure
Experiments can reach much larger Reynolds numberiinction. The information gained about the anisotropic ve-

than numerical simulations and can average over many largdacity field in method(ii) is one of the key points of this

eddy turnover times. At large Reynolds numbers, there is @aper.

clear separation between the inertial-range scales and the Using straightforward angular momentum theory

scales which are invaded by anisotropies, which may facili{Clebsch-Gordan algebr&2], it is possible to arrive at ex-

tate the analysis. Also, experiments allow a precise contrgplicit expressions for the irreducible componegié6, ¢) of

Il. ANGULAR DEPENDENCE
OF STRUCTURE FUNCTIONS
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(@) o, [2= G di+ (4+ () dy]
Uu K(dlidZ!gz ): (2) (2) .
x [+ 7+ 17 (P +7-17]

0 ’,4 As is well known, the isotropic part involves $# with the

Ut S explicit form of go(6) set by incompressibility.
— 7y —> In the case of shear turbulence, the velocity gradient
points in they direction. In this case we have the reflection
symmetryG,,(r,0,d) =G, (r,0,7— ¢). At $=0 the par-
tial symmetryG,,(r,0,¢=0)=G,,(r,7— 0,¢=0) leads to
the following expression for the anisotropic contribution:

>
>

u g,(0)=d;+d,co926)+dscog46), (4)

where the parametend, , are different from the parameters
with the same name in Ed3). The loss of axisymmetry
. results in an extra free parametgs. At azimuthal angles
] Vi 10 away from ¢=0, the anisotropic contribution acquires an-
other free parameter and becomes

FIG. 1. Probe geometries for measuring botand 6 depen-

dence of structure functionga) With two probesy and ¢ are re- 02(60)=d;+d,cog26)+dzcog46)

lated through the time delayr, #=tan (ro/U7), r2=r} o). o)

+(U7)2. (b) With ten probest spans 45 discrete values, afdan +d,[(12+28)sin(20) + (2— (2))sin(46)],
be varied independently by selecting time delaysy; /(Utané). (5)

the second-order structure function. Here, it suffices to lisivhereas thep dependence is given by

the result for flows with decreasing symmetry. We will spe-

cialize the formulas for our case, in which we measurexthe 0s(¢)=ds+dgcog29), (6)

component of the fluctuating velocity in axisymmetric and

shear turbulence. In both cases the flow is assumed homogethere in Eqs(5) and(6) the parameterd, , ; are different

neous. The used coordinate system is sketched in Fig. 2. from the parameters with the same name in earlier expres-

In the case ofaxisymmetricturbulence, all statistical sions. Because Eq¢5) and (6) involve disjunct sets of pa-

guantities are invariant under rotations aroundxlaeis, that rameters, it is not possible to reconstruct thelependence

iS, Gyx(r, 0, ¢) becomes independent ¢, of g, at a given angl® from its § dependence at a givef
Equations(4) and (5) are completely equivalent to those in
Ref.[6], but we point out that Eq13) of Ref.[6] is in error

(0) @)
Gux(r,0)=do(O)r2 +gy(O)ré because it contains a redundant fit parameter.
(0)s O Summarizing, in case of axisymmetric turbulence there
=Cof2+ ¢ sinf0}r 2 +{d; +d,cog 26) are five adjustable parameters: two exponefts and 7%
and three prefactorsy,d,,d,. For shear turbulence there is
+ (dy,dy, 22 cog 40) 155, 3 P ac oo, &, 02

an extra prefactor a$h=0 and a total of seven adjustable
parameters for other azimuthal angles. The art is to deter-
with the functionx determined by axisymmetry, mine the;e parameters by fitting the appropriate equation to
an experimentally measured structure function.

Rather than finding the beéh a least squares sensset
\ of parameters, which is a daunting task in seven-dimensional
parameter space, we will look for the set of nonuniversal
parametersy, dq, ... that provide the best fit for given
values of the universal exponent§” and ¢?. First, the
value of the isotropic exponelg[go) is guessed, for example,
from the transverse structure functi@y . Next, the anisot-
ropy exponent’?) is scanned over a range of values. At each
£$?) we then seek for the nonuniversal constantsdy, . . .
which minimize the sum of squared differencgsbetween
measurement and fit. The value of this minimum depends on
{2, and at somet? it will be smallest. This distinction

FIG. 2. Coordinate system: velocity increments-u, are mea-  between universal and nonuniversal parameters was inspired
sured over a vectar with the measured velocity component point- by Aradet al. and Kurienet al.[2,6] who followed the same
ing in thee, direction. procedure.

.

zZ
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TABLE |. Characteristic parameters of the used turbulent flof&s:axisymmetric turbulence an(®)
homogeneous shear turbulence. The mean velocltyvigth u,,e=(u?)*2 being the rms size of the fluctua-
tions. For the definiton of the other characteristic quantities the rms derivative velogity
=((du/dt)?)2is used. For the mean energy dissipatiathe isotropic value is taker=15vu,,2U 2 with
v the kinematic viscosity. The Kolmogorov scale ig=(1°/€)¥* and the Taylor microscale is
=UUms/Uyms With the associated Reynolds numbRe, =AU,/ v. The integral length scale is defined in
terms of the correlation function of velocity fluctuations: [5{u(x)u(x+r)),dr/(u?). The total integration
time T;,; of the experiment is expressed in integral timesliy;, /L.

Configuration U (m/s Urms (M/9) Re, 7 (M) L (m) UT;, /L
1 10.6 1.14 560 181074 0.17 5x 10°
2 11.4 1.15 600 181074 0.19 3xX10°

The key question then is if the anisotropy description of0.7 m) placed in a recirculating windtunnel. Velocity fluctua-
measured structure functions enables one to detect the infltions u(y) are measui2 m downstream using an array of
ence of large-scale anisotropy on the shape of the structutet-wire sensors. In all experiments reported here we used
function, as characterized by its scaling exporgéﬁ’t. From  probes with a sensitive length of 2Qim. They were oper-
dimensional argumentfl9] we expect{{?)=4/3, but the ated by a computerized constant temperature anemometer.
precise value may be influenced by intermittency. The velocity signals were low pass filtered at 10 kHz and

An alternative approach to detect large-scale anisotropy isampled synchronously at 20 kHz which is approximately
to measure correlations of the velocity field that vanish exiwice the Kolmogorov frequency. Each experiment was pre-
actly in the isotropic case; these correlations and their anguceded by a calibration procedure in which the voltage to air
lar dependence are then determined by anisotropy alon¥€locity conversion for each probe was measured using a
Mixed structure function$,s(re,) were measured in a tur- calibrated nozzle. The resulting ten calibration tables were
bulent boundary layer by Kurien and Sreenivaf2®] using  updated regularly during the experiment to allow for a
an interpolation scheme to extract an anisotropy exponentsmal) temperature increase of the air in our recirculating
Although such a flow is not only anisotropic but also highly windtunnel. Statistical convergence was assured by collect-
nonhomogeneous, Kurien and Sreeniva@d) found an an-  ing data for several hourgt least 3<10° large eddy turn-
isotropic scaling exponenit?’~1.21, which is close to the OVer times. _ _ _
dimensional estimaté?=4/3. The procedures used also ~BY time delaying the signals from the wires, thelepen-
allowed one to find scaling exponents of higher-order mixe(fjer?ce of structure functl_ons can be measured. By rotating the
structure functions. Similar values of these exponents werNtire array along theaxis, the angles was changed. It was

also found in homogeneous shear turbulef&H.

In this paper we will analyze experiments involving two Yy
turbulent flows with decreasing symmetry. In the first case
the flow has axisymmetry, in the second case we consider x
homogeneous shear turbulence. In both cases turbulence wa
created in a windtunnel using special grids. These grids were z

designed to preserve the homogeneity of the flow: th€350
description deals witthomogeneouanisotropic flows. This
severe constraint limited the Reynolds numbeRie=600.
The flow parameters are listed in Table I.

In the following two sections we will describe the two
experiments and the analysis of second-order structure func-
tions using the S@) formulas Eqs.(3)—(6). We will then A
consider the angle dependence of third- and seventh-orde!
structure functions in homogeneous shear turbulence.

probes grid

IIl. AXISYMMETRIC TURBULENCE

In view of the SQ@3) picture, it is attractive to study axi- g, 3. Axisymmetric turbulence is generated with a target-
symmetric turbulence as it involves the simplest expressiogpaped grid. The orientation of the vectoover which velocity
for the angle-dependent structure functions with the smalleSkcrements are measured is determined by the argytesd ¢. The
number of adjustable parameters. The experimental setup igimuthal anglep is varied by physically rotating the probe array;
sketched in Fig. 3 and the flow characteristics are summane polar angles is adjusted by varying the time delay between
rized in Table I. Axisymmetric turbulence is generated in thesamples, as illustrated in Fig. 1. The characteristics of the flow are
wake of a circularly symmetric target-shaped gldiameter listed in Table I. The grid is not drawn to scale.
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FIG. 5. Energy spectra of all ten probes of the probe array,
which spans a separation of 0.24 m.
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FIG. 4. Longitudinal and transverse structure functions in axi-
symmetric turbulence. Dots connected by lines, transv@r}(e);

line, longitudinalG5(r). The dotted lines indicate the extent of the . L
inertial range. Inset: anisotropy ratR(r) computed from the lon- different, the noise in the measured transverse structure func-

gitudinal and transverse structure functions according to(Eg.  1ONS is larger than in the longitudinal structure functions. We
The lower curve assumed the mean velocity as the convection vé&onclude that our flow is axisymmetric and homogeneous, so

locity in the Taylor frozen turbulence hypothesis; the upper curvethat the simplest S@) decomposition formula Eq3) ap-
follows the definition of[6]. plies which has only three adjustable nonuniversal constants.
The anisotropy of our flow can be learned from the satis-
. . . faction of the isotropy relation between measured longitudi-
verified that all results were independentdaf thus proving nal GE and transverséﬁg structure functions. The relation is

the axisymmetry of the flow. : C -
. .. such that the anisotropy ratiR(r), which is defined as
Figure 4 shows the second-order transverse and longitu- by ratie(r)

dinal structure functions. The longitudinal structure function r dGt
is the result of single-probe measurements, translating time R(r)EG;(r)/ G'§+ — _ZJ (7)
delays into spatial separations using Taylor’s hypothesis. In a 2 dr

homogeneous flow the longitudinal structure functions mea- ) . ) )
sured at the different locations, i=1, . .., 10 of theprobes ~ Should be identically equal to 1. SatisfactionR(fr) =1 can

should all be the same. be tested even if scaling behavior is absent. In case of a pure
There are several circumstances which may affect homaalgebraic behavior of one of the structure functioRgr)
geneity: the turbu'ence properties may depend]por the =1 tI’IVIally ImplleS the same algebraic behaViOi’ Of the Other

probe arrayitself may influence the measurement in an inho-one. In the context of the SO(3) description, where anisot-
mogeneous fashion. The position of the ten probes was chdopy is reflected in a mixed algebraic behavig(r) =1 can
sen so as to space the 45 distances between them as closeaggidentally be satisfied in the anisotropic axisymmetric
possible to exponential. This causes the probes to crowd neg@se, but only if a very special relation exists between the
the center two probes which have the smallest separation. Aarameterss”, (), ¢co, d;, andd, of Eq. (3), which we
this location one might suspect an influence of the densedleem extremely improbable.
detection array on the measured turbulence properties. That So far, experimental studies involving E) have used
this is not the case is demonstrated in Fig. 5 which shows theross wires which measure theandv velocity components
frequency spectr&(f,y;) at each probe positioy;; they in a point while for both components Taylor’s hypothesis is
appear to be virtually independent pf. A further proof of  invoked to translate time into space. This is not so for the
the homogeneity of the measured velocity fluctuations is proresults shown in Fig. 4, where the transverse structure func-
vided by the transverse structure function itself. tion uses true spatial separations. Another difference with the
We recall that the transverse structure funct@his mea- ~ cross-wire test is that in our experimental se®{r) be-
sured using the discrete distances between probe pairs in teemes trivially 1 at integral scales since bd®(r— o)
array. Each point of the transverse structure function in Fig= G'Z'(r—>oo)=2<u2>. Therefore,R(r) is only sensitive to
4, therefore, corresponds to a distanicey;—y; between anisotropy at inertial-range scales. The inset of Fig. 4 shows
different probe pairs that are at different locations vy; . that R(r) indeed shows a maximum at large scales, idth
Homogeneity shows in the smoothness of the dependence eal only reached at/7=2X 10°, which is larger than the
the separatiorr of the transverse structure function. Of size of the probe array.
course, since the different points of the curve correspond to A point of discussion raised in Rg®6] is whether the true
different probe pairs whose characteristics may be slightlyspatial separations in the transverse structure functi@’
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should be related to time-delayed separatiorsdJ) 7 of the R T Ty T
longitudinal Glé using the mean velocity as the frozen : 3
turbulence convection velocity. For their atmospheric bound-
ary layer flow they instead proposed to takeJ?
+(3u)?]*? as convection velocity. Because their fluctuation
velocity was large (/U~0.25), it raised the convection ve-
locity by 25%. In our case/U~0.1, and as the inset of Fig.
4 shows, the effect on the measured anisotropy is smallmN 1
What is perhaps important is that the Taylor hypothesis is
increasingly challenged at high frequencigsnall scales :
[22]. This is responsible for the slight increase Rfr) at -
small scalesi(/ »=~20). The apparent increase of the anisot- :
ropy at small scales is inconsequential for the analysis of the
large-scale anisotropy. 0.5
The question now is if we can detect the influence of :
anisotropy at large scales with help of the (SOmachinery i
Eq. (2), in particular whether we can recover the anisotropy
scaling exponent'?)=4/3 from the behavior 06,(r,6) at
larger. First, we measured the angle dependendg.ofising
only two probes spaced a}/»=100, which is centered in 5
the inertial range /7€ [30,800. The experiment and fit of
Eq. (3) are shown in Fig. @). For the fit, we fixedt!) and
determined the constantg,d; ,d, and the exponent?) in a 4
least squares procedure. The expongft varies from¢{®)
=0.70 to 7~0.74 for the transverse and the longitudinal
case, respectively. We selefif’=0.72, and discuss the in-
fluence of this particular choice below. Strikingly, the isotro- L,

pic contributionrg(zo)go(e) alone does not provide a satisfy-
ing fit, and it is necessary to include the anisotropic
contribution. We find that the best fit is reached
=1.5, which is close to the value 4/3 following from dimen-
sional arguments. The almost perfect fit corresponds to &
well-defined minimum of the sum of squared differengés 1

0o
T

as shown in Fig. @) where we determined the minimum | roln = 5?
squared error over a range 6§). As we do not have an 1.0 — 3 E— 2.0
independent estimate of the error of measured structure func ’ '; (2) '

tions, we normalize the minimung? to 1 by multiplication 2

with an appropriate factor. FIG. 6. (a) Full line: measureds,(r,6) using two probes sepa-

These findings completely agree with those of Aed@l.  rated atro/ =100, so that(r)=sin (r,/r). Dash-dotted line: fit
and Kurienet al. [2,6] who followed a similar procedure in  that only includes isotropic part involvingy(6) [Eq. (3)]. Dashed
the atmospheric boundary layer and concluded nj‘ﬁﬁ{ line: fit including both isotropic and anisotropic part. Dotted lines:
=1.39. However, repeating the experiment with differentextent of inertial range(b) Minimum of the sum of squared differ-
probe separations, confuses the issue. As Fig(® illus- ences between measurement and fit for variation of the nonuniver-
trates, the value of¢$?) that optimizes the fit depends sal parameters,, d;, andd, atro/7=50, 100, and 190. The

strongly onry; it is large @(2)=l.8) at smallr, and small values of{(zz) that give the best fit are indicated by the open balls.
(g(z)_ 1.2) at,largero with zboth values of, in the inertial The sum of squared diffences is normalized such that its minimum
2 — 4 ,

H 2_
range. However, the valug /=100 is preferred as it pro- Is always af"=1.
vides the best defined minimum. Such a preference can per- The information obtained on thé dependence of the
haps be justified by the observation that the arjlearies  structure function is greatly enhanced if the number of ve-
most rapidly near =r,, so thatr, needs to be chosen well locity probes is made large enough such that structure func-
inside the inertial range. In principle, a two-point measure-tions at /=90° can be made of pure spatial separations.
ment would suffice to determine the parameters of th€35O Measured structure functior@,(r,#) for the pure longitu-
description, but now the experimental information comes aslinal arrangementf=0 using time delays only, ford
a single function with a coupled dependence @md 6. This  =15°, 35°, 55° using a combination of space and time de-
single function must then be used to determine four unknowritays, and for the transverse arrangement are shown in Fig. 7.
parameters. The dependence of the outcomeydndicates  To more clearly expose the quality of the fits, we plot the
that this information is not enough. structure functions compensated by the self-similar behavior
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L L L (trivial) # dependence ady. At r/ »=10° the relative size of

the anisotropic parr,f(zz)*f(zo)gz(a)/go(O), ranges only from
—0.21 at6==/2 to —0.22 at=0. Although such slight
dependence om could still be compatible with the S®)
description, it complicates the measurement of the anisot-
ropy scaling exponent$?) .

Also in this case, we find a poorly defined minimum of
the sum of squared differencgé at a value of the anisot-
ropy exponent;$?~2.1 which is much larger than the di-
mensional predictiof?)=4/3. A serious problem is that the
position of the minimum strongly depends on the assumed
value of 8, it varies from¢$?=2.5 at7{"=0.70 to ¢’

_ =2.0 atf¥=0.74.
1.0 1,5(; 2)2.0 25 . Trivially, all second-order structure functions reach at
sepp3li i 2o large r the gsymptoter(r,a)azwz'); 'this asymptote is
10 10?2 103 also shown in Fig. 7. The SQ) description applies to the
rin dependence of the structure functioaforethis asymptote is
reached, a dependence which varies in a characteristic way

FIG. 7. Full lines measured 23G,(r,6) at =0, 15°, 35°,  Wwith the angle. This is a subtle point because we always find
55°, and 90°. Dashed lines: simultaneous fit of B).to the data  g,(#)<<0, which may also represent the trivial rise to satu-
at #=0°, 35°, 55°, and 90°. The asymptote of the structure func-ration of the structure function.
tions 2u?) is indicated. Inset: minimum of the sum of squared We conclude that for our axisymmetric turbulence the
differences between measurement and fit for variation of the thewo-probe experiment gives insufficient information to test
nonuniversal parametecg, d;, andd,. A minimum is reached at  the S@3) description. The more extended information that is
{$)~2.1. The sum of squared differences is normalized such thagontained in a fullr, @ dependence of the structure function
its minimum is always ay*=1. shows that in this case an anisotropy exporigHtcannot be
determined unambiguously.

TNT T [ T T T T[T T T7IY

[ B B

/4
i’: .
LB L B B

1.0

G,(r,8)~r?3 This procedure amplifies the noise in the
>0 multiprobe structure functions, which is caused by slight

differences in probe characteristics. Because the longitudinal IV. SHEAR TURBULENCE

structure function a¥=0 is made from time delays only, ) ) ) ,

this curve is smooth. However, the consistency between the While the anisotropy of the axisymmetric turbulence of
single-probe and multiprobe measurements shows in thg€C- !l may be modest, a much stronger angle dependence
closeness of the curves &0 and§=15°. was created in homogeneous shear turbulence. Homoge-

We have attempted to simultaneously fit the measure§€ous shear turbulence has a linear variation of the mean
structure functions a#=0°, 35°, 55°, and 90° using E¢@) flow velocity U in the shear direction, a constant fluctuation

with a single set of parameters; the result is shown in Fig. 7/€l0city U, and an energy spectrum that does not depend on
In correspondence with Fig. 6, the fit rang,r,(6)] was Y- It is the simplest 'DOSSIb|e _anisotropic .turbulent fI(_)W,
taken fromr /7= 100 to values »(6) whereG,(r, 6) have whose large-scale anisotropy is ch_aracterlzeq by a s_,lngle
reached nearly their asymptotic valga(u?), with £=0.9. number: the shear ra@_=d_U/dy. Whilst the anlsotrqpy is
The small¥ dissipative range behavior was modeled by re-Stronger, the S(3) description now also has more adjustable

lacing the isotropic part in Ed3) b parameters due to the loss of symmetry. '
P 9 picp a3) by To generate a uniform mean velocity gradient we use a

r dh grid (dimension 0. 0.7 n?) whosey dependent solidity is
Cof h(r)+siré( 0)5 ar tuned to preserve a constant turbulence intensitigrough-
out most of the windtunnel height. The experimental ar-
) 5 2 (9212 rangement is sketched in Fig. 8. With the mean flagy) in
with h(r)=r=(1+(r/rc)%)*2 (8 thex direction, the shear points in the transveysgirection.

, The challenge of the experiment is to maintain the homoge-
andr./7=12.6. The functiorh(r) [23%4] models the tran- ety of the flow: the S@B) theory[Eq. (2)] describes anisot-
sition from dissipative scaledi(r)~r<, to inertial-range

©) ropy but presupposes homogeneity. That this challenge is
scalesh(r)~r¢2". This choice improves the appearance ofmet in our experiments is illustrated in Figa®which shows
the fit, but it is completely inconsequential for our conclu-the variation of the mean flow and the turbulence intensity
sions. with y. It is seen that the mean velocity profile is linear, with
Using a single set of parameters it is possible to obtain @ small variation of the turbulence intensity over the probe
satisfactory fit ofG,,(r, #) over the indicated fit range and at array. Further evidence of homogeneity is provided by Fig.
all 6, except perhaps @=0 where the large-scale behavior 9(b), which shows that the energy spectra, and thus all
of the longitudinal structure function is not represented propsecond-order quantities, such as the integral scalip not
erly. However, the variation with9 is mostly due to the vary significantly withy.
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FIG. 8. Homogeneous shear is generated using a grid with vari-

able solidity. The mean velocity increases in thdirection, but is
does not vary witte. The (effective) orientation of the probe array
is determined by the anglesand ¢.

In this flow, the structure function depends both&and
¢, and we measured first tiiedependence ap= m/2. Due
to the absence of both axisymmetry and the padialym-
metry at¢p=0, the general expression E&) has to be used
with five nonuniversal parameters. The result of a fit of this
formula to the measured structure function, using a single se
of parameters, is shown in Fig. 10. In comparison to the case (-2
of axisymmetric turbulencéFig. 7) the larger number of
parameters gives a better fit at angkeslose to the trans- —~
versemw/2, but in both cases angles close to the Iongitudinal} 1074
ones,#=0, are not represented well by the fit. Surprisingly, s
the best fit now occurs @?)~1.3 which is very close to the & 107
dimensional prediction’$”’=4/3. Contrary to the axisym- = jj-6
metric flow, the assumed value 8§ now hardly affects the 7
minimum ¢$2). 1o

In contrast to the experiment in axisymmetric turbulence, 10 102 107 04
the anisotropic contribution shows a significant variation F(Hz)
with the angled. At r/ = 10° the relative size of the aniso-
tropic part,r4(22)’€(20)gz(0)/go(0), nowranges from-0.36 at FIG. 9. Homogeneous shear turbulen@.Open circles, mean
6=m/2 to —0.28 atd=0. It is precisely this angular varia- Vvelocity U; closed dots, rms fluctuationsat x/H=5.1 behind the
tion that is the hallmark of the S®) description, and which ~Shear generating grid, whet¢=0.9 m is the height of the tunnel.
must be used to determine the anisotropy scaling exponerﬁ‘.ear the lower wall the turbule_nt boundary layer marks the end of
That ve now i a vale ot which s closer o the ' J070eicue S ger, e e sy
dimensional value 4/3 may be due to the larger variation wmlhe probe array. The point=0 indicates the center of the probe

0 of the an|5(_)trop|c co_ntnbuﬂon. . array; it is aligned with the arrow, the center of the shear profile, in
For the axisymmetric turbulent flow we have verified thatframe(a)

there is nog dependence, as it should. For shear turbulence,
instead, a cleag dependence of the second-order structured): 7/2 (along the shear This of course also follows from
function is expected, given the strong asymmetry of the flowihe r_reflection symmetry of the second-order structure func-
We therefore measured the structure functi@y(r,6  tion.
=7T/2,(f')) as a function of¢ by rota'ting thg probe array. Compensated structure functions 23G,(r, 0= m/2,4)
According to Eq(6), the S@3) analysis predicts & depen-  {or these two angles are shown in Fig. 11. Let us emphasize
dence that these measurements do not involve invocation of Tay-
© @ lor's frozen turbulence hypothesis. A disadvantage of the
Gulr,d)=0or %2 +D(p)réa", 9 physical rotation, however, is that the curves have larger
fluctuations at large due to a slight inhomogeneity of the
with D(¢)=ds+ dgcos(25), and the variation withp of the  flow. Instead of extracting the anisotropy exponefrf, we
anisotropic contribution would be largest if the azimuthalset {$¥=4/3 and extract the angle dependerizgp) from
angle is rotated fromp=0 (perpendicular to the shealo  the experiment. As is shown in Fig. 11, the found angular
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AL AN T similar ¢ dependence. For example, we have modeled the
- ] manner in whichG,(r,¢) reaches its large- asymptote
_______ 2(u?) as

-

0.02} ] Gy(r, ) =ar® [1+1/L(¢)] %,

? and found a similar cos¢® dependence df(¢) over ther
\ dynamical range of the experiment.

In conclusion, for our experiment on homogeneous shear
turbulence, the S@) machinery appears to work: We were
able to extract the anisotropy exponent from the polar angle
dependence of the second-order structure function. Con-
versely, we have shown that its azimuthal dependence is ac-
cording to the first anisotropic sector.

G,(r.0)/rH

107

10 1Sg@20 25 H
PIY 0 1 L i P2 L V. HHIGHER-ORDER STRUCTURE FUNCTIONS

1 10° 10° . : .
0 f I 0 As was realized earlig20], a better approach to quantify

anisotropy may be to measure structure functions whose iso-

FIG. 10. Full lines measured 2°G,(r,6) at =0, 15°, 35°,  tropic part vanishes. Since we measure only one velocity
50°, and 90°. Dashed lines: simultaneous fit of &.to the data component, the lowest-order tensorial quantity that does so is
at 6=0°, 15°, 35°, 50°, and 90°. The asymptote of the structurethe third-order structure function
functions 2u?) is indicated. Inset: minimum the of sum of squared
differences between measurement and fit for variation of the five Gaaa(N=([Un(X+1)— U, (x)]%), (10
nonuniversal parametexy, di, d,, d3, andd,. A minimum is
reached at$?)~1.3. The sum of squared differences is normalizedWith @=x in our case. This tensor quantity can also be ex-
such that its minimum is always af=1. panded in irreducible components.

2
dependence d(¢) is indeed very close to that of cosfR Gaa=05(0)" +g§(0,¢)r5(3 CaNe (11)
Clearly, the reflection symmetry @&, dictates a¢ depen-
dence such as cos{(@), but it is remarkable that the mea-
suredD(¢) is actually so close to cos{®.
Representations of the structure function that resembl
Eqg. (9), but which are not identical to it, also produce a

where the superscript 3 aj , now indicates the order. How-
ever, while incompressibility of the velocity field reduces the
Qumber of unknown parameters of the anisotropic part of the
second-orderstructure functlong2 to just a few, no such
reduction forg3 is possible, unless the statistical properties
T e of the driving force(the veIocny pressure correlationare
L ] known. The well-known von Kianan-Howarth-Kolmogorov
equation fixes the isotropic component

$=0 00 0 Ak 93(0)=—£ecog 6). (12

In the case of isotropic turbulence, a relation similar to Eq.
(7) exists for the third-order angle-dependent structure func-
tion G,,(r, ) in terms of the longitudinal structure function

G5(r)=Gyy(r,6=0):

Gyx(T,0) = 3c0s6{ [ 1+ cog(6)]G5(r)

| 0 20 40 o060 80 | _ d |
P +sm2(0)rd—03(r) . (13
5*]0'3 1l ' 1l | Lol 1 L r
10 10? 10° . : . _
rl In axisymmetric turbulence it follows from reflection
U symmetry thaG,,,=0 at #= 7/2, which trivially applies to

FIG. 11. Azimuthal dependence of structure functions in sheafh€ isotropic part Eq(12), but also to the anisotropic part.
turbulence. Full lines: measured 2°G,(r, 6, ¢) at 6=m/2 and¢ ~ UsiNg multiprobe arrays, it is possible to meas@g at
=0°, and 90°. Dashed lines: fits of E(). For clarity, the curves Small angless, but it poses extreme requirements on probe
at $=0° have been multiplied by a factor 1.2. Inset: open balls,calibration as pairs of probes must now be sensitive to slight
functionD(¢) determined from fits at seveft angles, dashed line, asymmetries between positive and negative velocity incre-
fit of ds5+dgcos(2p). ments.

046303-9



STAICU, VORSELAARS, AND van de WATER PHYSICAL REVIEW B8, 046303 (2003

]EI HELELELLE | T T T LRI | IE IEIIII”I ' L | T ","""l IE
z z L z

0.1t 3 0.1F

&) )1 |
10 3 3 107 E E
103 ¢ . ' |
E ] 109p E
-| Ll I L1l 1 L1l |- i L1l 1 Lol |:

10 10 10°

r/n 1 T T T T T T T T T T T T T T

FIG. 12. Third-order structure function measured in axisymmet-
ric turbulence. Full line: longitudinal structure functidd} at 6 L
=0. Dots connected by liness,,,(r,0) at 6=35°; dash-dotted
line, Gy(r,#) computed fromG} using the isotropy relation Eq. 0.1
(13).

_____

Figure 12 shows the longitudin@5(r) which was mea- o
sured using time delays ar@,,,(r,) at 6=235°, together 1072
with the isotropic prediction Eq.13). Clearly, it is not pos-
sible in axisymmetric turbulence to distinguish the measured
curve atd=35° from the isotropic prediction and it is there-
fore not possible to deduce information about an anisotropic
contribution. Third-order transverse structure functions were
also measured ii20] in (inhomogeneoysboundary-layer
turbulence. However, in this case the structure function was > 7
computed from the absolute values of the velocity incre- 10 10 10
ments(|Au|3), for which a decomposition Eq11) is very rin
troublesome as it can never involve the proper isotropic part.

In shear turbulence, the reflection symmefryy 77— 6 is
broken at¢+#0 and the anisotropic part is no longer bound
to vanish atf=7/2. Angle-dependent third-order structure
functions are shown in Fig. 18 for angles¢=w/2 and 6

1073

FIG. 13. Third-order structure function measured in homoge-
neous shear turbulenc@) Full lines: G,,,(r,8) at =0° (longitu-
dinal), #=15°, #=35°, §=60°, and9=90°. Dashed line: fit of
GooolF,0=90°)~r4", with ¢(2)~1.4. (b) Full line: third-order

-~ L aco Al o . longitudinal structure function. Dashed line§,,,(r,0) at 6
=0 (longitudina), §=15°,0=35°, and§=60°. In this case =15°, #=35°, and9=60° computed from the longitudinal one

the. iSOtro.piC Con.tribl.mon Vanishes &_t= /2, and Or.]ly the. using Eq.(13). The Kolmogorov predictiorG,(r,0=0)= — s er
anisotropic contributions remain. If higher-order anisotropiesg i qicated by K41. Dash-dotted line: fit Ofxl)é)%ﬂ_li).
with |>2 are absent, the scaling at& =/2 would be pure

and the scaling at smaller angles would be a mixture. Th(laE 14 timated f the lonaitudinal derivati
scaling exponent ai=7/2 can then be identified with? ; g. (14) was estimated from the longitudinal derivatiee

(D) T e = 15v((Jul 9x)?), with v being the kinematic viscosity. The
we fmd & 1.4,(0\/)vh|ch N S|gn|f|cantly larger than th? 'S0 admixture of the anisotropic scaling in the longitudinal struc-
tropic exponent{;’=1, and is rather close to the dimen-

ture functionG5; lain why it t scali -
sional predictior{gz)=5/3. If the SQ3) description applies, re TUNEHon = may sxpiain why 1S apparent scaing expo

h i f the lonaitudinal ¢ . Id b nent is smaller than 1, and why the apparent inertial range of
the scaling of the longitudinal structure function would be aG'g is smaller than that of the transverse structure function at
mixture of both exponents

0=ml2.
. . @) The factorb in Eq. (14) is an unknown function of and
Gz=—ger+brs’, (14 ¢ which can only be specified in a very general sense in the
SQ(3) description, using many undetermined parameters. It
with gg2>~1.4. Figure 18) illustrates that it is possible to can, however, in any case be concluded b{a#, ¢=0) must
find a factorb>0 to describe the behavior of the longitudi- change sign betweef=0 and 6= /2. This implies that
nal structure function at large scales. The dissipationeate there is an intermediate angle where the scaling is pure iso-
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[/ — I T Reynolds numbej7]. A challenge is to design quantities for
g .2 Pt unfolding the effects of intermittency and anisotropy. In this
o Z . respect Ref[8] shows that anisotropy is still observed at the
10 3 3 highest Reynolds numbers obtainable in the laboratory, even
F . when intermittency effects are accounted for. For the second
10k i order structure functions studied in this paper, isotropy will
eventually be restored at the smallest scales“aswith «
~ L 1 =@-P>o.
o) E 3
ol i 1 VI. SUMMARY AND CONCLUSION
TE 3 The key idea of the S@) description is that the observed
’ . 1 imprint of anisotropy due to stirring at large scales is depen-
10~k 3 dent on the geometric arrangement of the measurement. At
F ] some angles, the effects of anisotropy are larger than at oth-
1073 _ _ ers. The expected angular dependence can be worked out in
. Ll el 1 detail using the formalism of angular momentum theory and
10 10 10° can be used in experiments to unfold the effect of anisotropy
rin on measured second-order structure functions.

FIG. 14. S th-order structure func dinh In this paper we have described several experimental pro-
- 4. Seventh-order structure function measoure N NOMOYEzaqures to unfold structure functions using this angular de-
neous shear turbulence. Full lingSy,(r,6) at #=0° (longitudi-

nal), 6—15°, 9=35°, A—60°, and§—90°. Dashed lines: fit of pendence. Second-order structure functions of a single veloc-
Gy (F,6)~ —[0.9+ 5.2 sif(6) 2L ity component contain a mixture qf isotropic and anisotropic
7 contributions, which makes it difficult to extract the scaling
. . . . ) of the anisotropic contribution.
tropic, with scaling exponent 1. From Fig. (BBwe estimate We conclude that it is essential to use measurements of
this magic angledy, to be p,~15°. . _ the separate angle and distance dependence of structure func-
Apparently, the anisotropic contribution ®; (6=0) is  tjons. For axisymmetric turbulence, the apparent success of a
small. For Iarger0 the ISOthpIC contribution vanishes ac- Simp'e two_probe arrangement Where distance and ang|e in-
cording to Eq(13), in a way that is illustrated in Fig. 13. At formation are intertwined could not be reproduced when
the same time, the anisotropic contribution increasesgonsidering the information present in a multiprobe configu-
changes sign af= 6,,,, and according to Fig. 18), grows  ration.
larger than the isotropic part @=0. Therefore, the ampli- At this point we disagree with the conclusions of Arad
tude of the# dependence of the anisotrogé(6) is larger et al, Kurien et al, and Kurien and Sreenivasd,6,26,
than that of the isotropigg( ). This is contrary to the S@)  who analyzed boundary-layer turbulence using a two-probe
picture, where we would expect the anisotropic part to bearrangement. There are several possible explanations for this
(much smaller than the isotropic part. discrepancy. First, the Reynolds number in the atmospheric
In principle, low-order structure functions are affected byboundary layer that was studied in Ref§,6,2¢ is much
intermittency. This was already observed in the value of thdarger than ours, which may help to separate the effects of
scaling exponeng(zo) which in both flows significantly ex- large-scale anisotropy on inertial-range scaling. Second, the
ceeds the self-similar value 2/3. As intermittency effects arglependence on the separatiop of the probes was not
stronger for high orders, we show the angle dependence shecked in Refs[5,6,26. Finally, Refs.[5,6,26 apply the
G7(x(r,6) in Fig. 14. Contrary to the third ordés,,(r,6),  axisymmetric formulas, while boundary-layer turbulence is
the scaling exponent is almost independent of the afigle not axisymmetric The authors argue that in the two-probe
varied from 2.1 for#=0 to 2.2 for 6=m/2). Forr/np  method the large separationgwhich are most affected by
=500, a satisfactory fit could be obtained throughanisotropy come with smallg. At small ¢ the functional
Gy0(r,0)~[0.9+5.2sirf(6)Ir>, where we emphasize the forms of the axisymmetric angular dependence €%.and
dependence on thdoubleangle through sif{6). Such a fitis  the general formula Ed5) are not very different, so that the
possible because of the relatively small nois&if,(r,6).  axisymmetric formula would still be applicable. This again
Although its order is higher, the noise in the seventh-ordefllustrates the necessity of a separate measurement of both
structure function is smaller than that in the third-order oneangle ¢ andr dependence of the structure function.
of Fig. 13. For the more strongly anisotropic shear turbulence the
We conclude that for higher orders tifedependence of SQO(3) machinery to analyze second-order structure functions
structure functions is strongly influenced by intermittency,appears to work, at least our data are consistent with the
such that intermittency amplifies anisotropy. For example, idimensional value 4/3 of the anisotropic scaling exponent
was noticed by us that, unlike the longitudinal exponents, thg?) and the dependence on the azimuthal anglagrees
transverse ones tend to a limiting value at very large orderwith the predicted cosg) angular dependence of the aniso-
[25]. Another example is the observation that the hypertropic sector.
skewnes§37(x)(77)/G;( 7)""? does not decay with increasing In connection with the§(22)=4/3 value of the anisotropy
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scaling exponent, a paper by Lumley is often citgél]. This  create homogeneous flows that are more strongly anisotropic
paper discusses an elaborate scaling theory where the scalifig.

of the anisotropy corrections follows from the requirement  Another objection may be that our Reynolds numbers are
that the structure function be analytic in the shear @&te too small so that there is not a clear separation between
However, this only predicts the value 4/3 for tlieoss  inertial-range and integral scales. However, it is generally
structure function$,, andG,, which are proportional t&  pelieved that precisely these moderate Reynolds numbers
On the other handG,, would then involveS?, which dic-  \ould benefit most of the S@) description. We emphasize
tates the scaling of the anisotropic part tof§€'=2. that success of this approach was concluded in the case of

For shear turbulence it was possible to isolate the anisagirect numerical simulations which had a very small Reynold
tropic contribution in thethird-order structure function, number[17,18.

which turned out to be of the same order of magnitude as the e conclude that great care is needed to extract the an-
isotropic part. We do not know how to reconcile this finding jsotropy according to the S@) picture from experiments on
with the S@3) picture, where an anisotropic contribution is a strong turbulence. Before we can decide the same success as
correction Further theoretical work on an $8) description  in numerical simulations[17,18, more experiments are

of higher-order structure functions is clearly needed. Foheeded. These experiments must involve arrays of probes
higher-order structure functions, the effects of intermittencythat can also measure several velocity components. In this
become dominant, and an intriguing question is the relatioRvay it should be possible to measure the angular dependence

between intermittency and anisotropy. of only the anisotropic sector of the second-order structure
One could object that the anisotropy of the flows that areynction.

considered in this paper is small, and that consequently the

anisotropy content of the structure functions is too small to

be able to detect the_ anisotropy scallng exponent. While this ACKNOWLEDGMENTS

may be so for the axisymmetric flow, this is definitely not the
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