2,410 research outputs found
Fitting Effective Diffusion Models to Data Associated with a "Glassy Potential": Estimation, Classical Inference Procedures and Some Heuristics
A variety of researchers have successfully obtained the parameters of low
dimensional diffusion models using the data that comes out of atomistic
simulations. This naturally raises a variety of questions about efficient
estimation, goodness-of-fit tests, and confidence interval estimation. The
first part of this article uses maximum likelihood estimation to obtain the
parameters of a diffusion model from a scalar time series. I address numerical
issues associated with attempting to realize asymptotic statistics results with
moderate sample sizes in the presence of exact and approximated transition
densities. Approximate transition densities are used because the analytic
solution of a transition density associated with a parametric diffusion model
is often unknown.I am primarily interested in how well the deterministic
transition density expansions of Ait-Sahalia capture the curvature of the
transition density in (idealized) situations that occur when one carries out
simulations in the presence of a "glassy" interaction potential. Accurate
approximation of the curvature of the transition density is desirable because
it can be used to quantify the goodness-of-fit of the model and to calculate
asymptotic confidence intervals of the estimated parameters. The second part of
this paper contributes a heuristic estimation technique for approximating a
nonlinear diffusion model. A "global" nonlinear model is obtained by taking a
batch of time series and applying simple local models to portions of the data.
I demonstrate the technique on a diffusion model with a known transition
density and on data generated by the Stochastic Simulation Algorithm.Comment: 30 pages 10 figures Submitted to SIAM MMS (typos removed and slightly
shortened
A genome-wide investigation of the worldwide invader Sargassum muticum shows high success albeit (almost) no genetic diversity
Twenty years of genetic studies of marine invaders have shown that successful invaders are often characterized by native and introduced populations displaying similar levels of genetic diversity. This pattern is presumably due to high propagule pressure and repeated introductions. The opposite pattern is reported in this study of the brown seaweed, Sargassum muticum, an emblematic species for circumglobal invasions. Albeit demonstrating polymorphism in the native range, microsatellites failed to detect any genetic variation over 1,269 individuals sampled from 46 locations over the Pacific-Atlantic introduction range. Single-nucleotide polymorphisms (SNPs) obtained from ddRAD sequencing revealed some genetic variation, but confirmed severe founder events in both the Pacific and Atlantic introduction ranges. Our study thus exemplifies the need for extreme caution in interpreting neutral genetic diversity as a proxy for invasive potential. Our results confirm a previously hypothesized transoceanic secondary introduction from NE Pacific to Europe. However, the SNP panel unexpectedly revealed two additional distinct genetic origins of introductions. Also, conversely to scenarios based on historical records, southern rather than northern NE Pacific populations could have seeded most of the European populations. Finally, the most recently introduced populations showed the lowest selfing rates, suggesting higher levels of recombination might be beneficial at the early stage of the introduction process (i.e., facilitating evolutionary novelties), whereas uniparental reproduction might be favored later in sustainably established populations (i.e., sustaining local adaptation).Agence Nationale de la Recherche - ANR-10-BTBR-04; European Regional Development Fund; Fundacao para a Ciencia e a Tecnologia - SFRH/BPD/107878/2015, UID/Multi/04326/2016, UID/Multi/04326/2019; Brittany Region;info:eu-repo/semantics/publishedVersio
Minimax Estimation of Nonregular Parameters and Discontinuity in Minimax Risk
When a parameter of interest is nondifferentiable in the probability, the
existing theory of semiparametric efficient estimation is not applicable, as it
does not have an influence function. Song (2014) recently developed a local
asymptotic minimax estimation theory for a parameter that is a
nondifferentiable transform of a regular parameter, where the nondifferentiable
transform is a composite map of a continuous piecewise linear map with a single
kink point and a translation-scale equivariant map. The contribution of this
paper is two fold. First, this paper extends the local asymptotic minimax
theory to nondifferentiable transforms that are a composite map of a Lipschitz
continuous map having a finite set of nondifferentiability points and a
translation-scale equivariant map. Second, this paper investigates the
discontinuity of the local asymptotic minimax risk in the true probability and
shows that the proposed estimator remains to be optimal even when the risk is
locally robustified not only over the scores at the true probability, but also
over the true probability itself. However, the local robustification does not
resolve the issue of discontinuity in the local asymptotic minimax risk
Comparison of Information Structures and Completely Positive Maps
A theorem of Blackwell about comparison between information structures in
classical statistics is given an analogue in the quantum probabilistic setup.
The theorem provides an operational interpretation for trace-preserving
completely positive maps, which are the natural quantum analogue of classical
stochastic maps. The proof of the theorem relies on the separation theorem for
convex sets and on quantum teleportation.Comment: 12 pages. Substantial changes. Accepted for publication in Journal of
Physics
Fisher information and asymptotic normality in system identification for quantum Markov chains
This paper deals with the problem of estimating the coupling constant
of a mixing quantum Markov chain. For a repeated measurement on the
chain's output we show that the outcomes' time average has an asymptotically
normal (Gaussian) distribution, and we give the explicit expressions of its
mean and variance. In particular we obtain a simple estimator of whose
classical Fisher information can be optimized over different choices of
measured observables. We then show that the quantum state of the output
together with the system, is itself asymptotically Gaussian and compute its
quantum Fisher information which sets an absolute bound to the estimation
error. The classical and quantum Fisher informations are compared in a simple
example. In the vicinity of we find that the quantum Fisher
information has a quadratic rather than linear scaling in output size, and
asymptotically the Fisher information is localised in the system, while the
output is independent of the parameter.Comment: 10 pages, 2 figures. final versio
Breeding value estimation with incomplete marker data
International audienc
Characterising group-level brain connectivity: A framework using Bayesian exponential random graph models
The brain can be modelled as a network with nodes and edges derived from a range of imaging modalities: the nodes correspond to spatially distinct regions and the edges to the interactions between them. Whole-brain connectivity studies typically seek to determine how network properties change with a given categorical phenotype such as age-group, disease condition or mental state. To do so reliably, it is necessary to determine the features of the connectivity structure that are common across a group of brain scans. Given the complex interdependencies inherent in network data, this is not a straightforward task. Some studies construct a group-representative network (GRN), ignoring individual differences, while other studies analyse networks for each individual independently, ignoring information that is shared across individuals. We propose a Bayesian framework based on exponential random graph models (ERGM) extended to multiple networks to characterise the distribution of an entire population of networks. Using resting-state fMRI data from the Cam-CAN project, a study on healthy ageing, we demonstrate how our method can be used to characterise and compare the brain's functional connectivity structure across a group of young individuals and a group of old individuals
Characterising group-level brain connectivity: A framework using Bayesian exponential random graph models.
The brain can be modelled as a network with nodes and edges derived from a range of imaging modalities: the nodes correspond to spatially distinct regions and the edges to the interactions between them. Whole-brain connectivity studies typically seek to determine how network properties change with a given categorical phenotype such as age-group, disease condition or mental state. To do so reliably, it is necessary to determine the features of the connectivity structure that are common across a group of brain scans. Given the complex interdependencies inherent in network data, this is not a straightforward task. Some studies construct a group-representative network (GRN), ignoring individual differences, while other studies analyse networks for each individual independently, ignoring information that is shared across individuals. We propose a Bayesian framework based on exponential random graph models (ERGM) extended to multiple networks to characterise the distribution of an entire population of networks. Using resting-state fMRI data from the Cam-CAN project, a study on healthy ageing, we demonstrate how our method can be used to characterise and compare the brain's functional connectivity structure across a group of young individuals and a group of old individuals
- …