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Abstract

The brain can be modelled as a network with nodes and edges derived from a range of imaging

modalities: the nodes correspond to spatially distinct regions and the edges to the interactions

between them. Whole-brain connectivity studies typically seek to determine how network properties

change with a given categorical phenotype such as age-group, disease condition or mental state.

To do so reliably, it is necessary to determine the features of the connectivity structure that are

common across a group of brain scans. Given the complex interdependencies inherent in network

data, this is not a straightforward task. Some studies construct a group-representative network

(GRN), ignoring individual differences, while other studies analyse networks for each individual

independently, ignoring information that is shared across individuals. We propose a Bayesian

framework based on exponential random graph models (ERGM) extended to multiple networks to

characterise the distribution of an entire population of networks. Using resting-state fMRI data

from the Cam-CAN project, a study on healthy ageing, we demonstrate how our method can be

used to characterise and compare the brain’s functional connectivity structure across a group of

young individuals and a group of old individuals.

Keywords: Exponential Random Graph Model (ERGM), Bayesian ERGM, group studies,

network neuroscience, fMRI

1 Introduction

Brain connectivity analysis aims to understand how spatially distinct regions of the brain interact

with each other. The use of networks to model whole-brain connectivity has become increasingly

popular in recent years [1]: by treating distinct regions as nodes and the connections between them

as edges, researchers have gained new insights into both the structure and function of the brain. To

determine the salient features of the brain’s connectivity structure, it is necessary to identify which of

those are common across individuals. Given the complex interdependencies inherent in network data,

however, it is not a trivial task to consider connectivity structure across multiple individuals; how

best to combine connectivity information across participants remains a key challenge [2].
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Many existing methods aim to construct a (single) group-representative network (GRN) across

(multiple) individuals. There have been several methods proposed for constructing GRNs. For exam-

ple, Achard et al. [3] constructed a group-representative network using mean functional connectivity

(mean-GRN) by first taking the mean of the individuals’ functional connectivity matrices and then

thresholding the resulting matrix. Song et al. [4] took a similar approach using the median of the

individuals’ functional connectivity matrices (i.e. median-GRN). Sinke et al. [5] constructed a group-

representative structural connectivity network from Diffusion Tensor Imaging (DTI) data by keeping

those edges which are present in at least 35% of the individuals’ networks (i.e. minimal-GRN). These

edge-based GRN methods are computationally convenient, since each individual is processed separately

and the subsequent analysis is based on a single network. However, these methods ignore higher-order

topological properties present in each individual’s network. Rather that construct a completely new

network as a combination of each individual’s, other methods represent a whole group by selecting

a ‘best’ individual network in terms of mutual information [6] or Jaccard index [7] (i.e. best-GRN).

While this approach preserves the topological properties of a single network, in subsequent analyses

it may lead to undue weight being placed on features that are not present in many of the remaining

networks.

The above issues are compounded when comparing brain networks across groups of individuals,

identifying group differences in connectivity via differences in the GRNs from each group. In particular,

network metrics are influenced by the overall density of the network [8]. As a result, it is difficult

to disentangle differences in more complex topological properties such as clustering from differences

in the network density; especially in the context of the various GRN methods. This is particularly

important in the context of ageing since mean functional connectivity is known to decrease with age

[9]. Note that it is not trivial to simply control for network density when comparing network metrics

due to their highly non-linear relationship.

A key consideration is whether to view the network as a single object or a single realisation of a

random process. The former implies that the network is a fixed construct, the latter defines a random

process (with inherent noise) that gives rise to a distribution of brain networks. An exponential random

graph model (ERGM) defines a parametric statistical distribution across all possible networks with a

given set of nodes (see [10] for a review). The aim of the model is to characterise the distribution of a

network in terms of a set of summary statistics. These summary statistics are typically comprised of

topological features of the network, such as the number of edges and subgraph counts. The summary

statistics enter the likelihood via a weighted sum; the weights are (unknown) model parameters that

quantify the relative influence of the corresponding summary statistic on the overall network structure

and must be inferred from the data. ERGMs are thus a flexible way in which to describe the global

network structure as a function of network summary statistics.

ERGMs have been applied successfully to characterise both functional connectivity [11, 12, 13,

14] and structural connectivity [5]. To date, there have been two proposed approaches for using

ERGMs in group studies. The first approach constructs an edge-based GRN for each group and then

fits the same ERGM (i.e. identical summary statistics) separately to each group’s network, obtaining

GRN-ERGM parameter estimates [5]. As described above, this edge-based approach may average over

informative topological structure present in each of the individuals’ networks. In contrast, the second

approach fits an ERGM to each individuals’ network and then takes the mean or median of the fitted

parameters from individuals within a group to represent the group-level connectivity structure [12,

13] (i.e. mean-ERGM or median-ERGM). Note that it is then possible to generate a GRN from the
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resulting mean-ERGM and median-ERGM parameter estimates [12]. While this is preferable to the

first approach, taking a simple mean or median may obscure important information.

While ERGMs are designed to represent network data in terms of network summary statistics,

they are limited in their ability to study specific edges. A complementary approach for analysing

brain network data is the mixed effects framework. This models the probability of a connection in

terms of both network metrics and covariates [15]. Although both approaches incorporate network

metrics into the models, the associated parameters have subtly different interpretations. The outcome

variable in an ERGM is the entire network and the parameters quantify the effect of the network

metrics on the global network structure. In contrast, the outcome variables in the mixed effects model

are the individual network dyads and the parameters quantify the relationship between the network

metrics and the probability of a connection. Note that, by including group membership as a covariate,

it is straightforward to use the mixed effects approach for group studies. The aim of this work is to

similarly expand the use of ERGMs for group studies.

In this article, we introduce a novel framework to model a population of individual brain networks

which we call multi-BERGM (the ‘B’ denotes Bayesian; the framework could theoretically be analysed

in a frequentist paradigm but we do not consider that further). Our framework uses a Bayesian for-

mulation of the ERGM within a multi-level (i.e hierarchical) model. Bayesian ERGMs have previously

been used in the context of a group study to characterise the distribution of a group-representative

network [5]. In contrast, our method fits a Bayesian ERGM to each individual network and pools

information across multiple individuals nested within multiple groups via the multilevel structure of

the overarching model. This provides an approach to characterise connectivity at a group-level, and

thus compare the brain’s connectivity structure between groups. We demonstrate our method on func-

tional connectivity networks derived from resting-state fMRI scans of participants from the Cam-CAN

project, a study on healthy ageing [16].

2 Methods

2.1 Data

The data were collected as part of Phase II of the CamCAN project (www.cam-can.org; [16]). The MRI

data were acquired on a 3T Siemens TIM Trio at the MRC Cognition & Brain Sciences Unit, with a 32

channel head-coil. Structural images were acquired using a 1mm3 isotropic, T1-weighted Magnetiza-

tion Prepared RApid Gradient Echo (MPRAGE) sequence and a 1mm3 isotropic, T2-weighted Sam-

pling Perfection with Application optimized Contrasts using different flip angle Evolution (SPACE)

sequence. The fMRI data for the eyes-closed, resting-state run were acquired using a Gradient-Echo

(GE) Echo-Planar Imaging (EPI) sequence, and consisted of 261 volumes (lasting 8 min and 40 s).

Each volume contained 32 axial slices (acquired in descending order), with slice thickness of 3.7 mm

and interslice gap of 20% (for whole brain coverage including cerebellum; TR 1,970 ms; TE 30ms;

voxel-size 3 mm x 3 mm x 4.44 mm). EPI fieldmaps with two TEs (5.19ms and 7.65ms) were also ac-

quired. All the raw data from CamCAN Phase II, together with more acquisition details, are available

on: http://www.cam-can.org/index.php?content=dataset.

The data were processed using r7219 of the SPM12 software (http://www.fil.ion.ucl.ac.uk/spm),

automated with release r5.4 of the Automatic Analysis (AA) pipeline system [17]

(http://github.com/automaticanalysis/automaticanalysis/releases/v5.4.0; for overview of pipelines,

see [18]) in r2015 of MATLAB (The MathWorks). To obtain a good starting-point for image nor-
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malisation, the T1 image was coregistered to the Montreal Neurological Institute (MNI) template

using rigid body transformation, and then the T2 image was coregistered to the T1. Both T1 and

T2 images were bias corrected, and then combined in a multimodal segmentation to estimate images

of each of six tissue classes, including grey-matter (GM), white-matter (WM) and cerebrospinal fluid

(CSF). Diffeomorphic registration (DARTEL) was then applied to the GM and WM segments to create

group templates, which were in turn transformed to MNI space using a 12-parameter affine transform.

The fMRI images were unwarped using distortion fields estimated from the fieldmaps, and corrected

for motion using rigid-body realignment to the mean fMRI image across runs. The different slice

acquisition times were corrected by interpolating to the middle slice. The images were rigid-body

coregistered to the T1 image and the spatial transformations from that T1 to MNI space (diffeomorphic

and affine) were applied to every fMRI image. Residual effects of abrupt motion were reduced by

applying wavelet despiking [19]. The mean time series for all voxels within the thresholded WM and

CSF segments were calculated to use as later covariates of no interest.

The fMRI time series were then extracted from 90 cortical and subcortical regions of interest

(ROIs) from the AAL atlas [20]. ROIs in the cerebellum were not included. The time series for each

voxel in each ROI were adjusted for various confounds by taking the residuals from a general linear

model (GLM) that included: 1) the time series in WM and CSF segments, 2) the 6 rigid-body motion

parameters from the realignment stage, 3) the first-order difference in those motion parameters across

successive TRs and 4) a cosine basis set up to cut-off frequency of 0.008Hz (implementing a form of

high-pass filter). Second-order (squared) terms for 1), 2) and 3) were also included in the GLM. The

autocorrelation in the GLM error was modelled by a family of 8 exponentials with half-lives from

0.5 to 64 TRs (estimated by pooling across voxels within each ROI), and used to prewhiten the time

series. The average voxels of the residual time series was then used as a summary measure for each

ROI. This approach was based on the optimised pipeline proposed by Geerligs et al. [9].

To illustrate our method, we analyse two groups (denoted j, i.e. j = 1, 2) from the Cam-CAN

study: the 100 youngest individuals, aged 18-33, and the 100 oldest individuals, aged 74-89 (denoted

i within each group, i.e. i = 1, . . . , nj , where n1 = n2 = 100).

2.2 Network construction

The preprocessed data consists of, N = 90, ROI time series for each individual. To apply a standard

(binary) ERGM, it is necessary to extract a network for each individual. For a given individual i,

we first computed the pairwise Pearson correlation between each of the time series, yielding a N ×N
correlation matrix CCC(i). In contrast with the pipeline proposed by Geerligs et al. [9], we did not apply

mean regression to the resulting functional connectivity matrices because we accounted for differences

in mean connectivity via the thresholding procedure or through the specification of the ERGM (we

return to this point in the discussion).

To each correlation matrix, we then applied a threshold r(i) to produce an N×N adjacency matrix,

AAA(i), with entries:

AAA
(i)
kl =

1 if CCC
(i)
kl ≥ r

(i) k, l = 1, . . . , N

0 otherwise.
(1)

The adjacency matrix defines an individual’s network, yyy(i), with an edge between nodes k and l if and

only ifAAA
(i)
kl = 1. The choice of threshold r(i) can have a significant impact on the resulting connectivity

structure [21, 22]. The two most common strategies are “absolute” thresholding and “proportional”
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thresholding. Absolute thresholding picks a common threshold r(i) = r for each individual. In contrast,

proportional thresholding ensures that the same number of edges are present in each network by

allowing the threshold to vary by individual.

Both thresholding strategies have their drawbacks. Since the number of edges in a network in-

herently affects the overall network [21, 23], differences in other network metrics may simply be

attributable to variations in the overall connectivity. A proportional threshold may thus be preferred

in order to keep the number of edges constant across individuals (in both groups) and facilitate com-

parison of other metrics of interest. On the other hand, a lower correlation value may be less reliable in

indicating a functional connection between brain regions. Therefore, by including lower correlations

as edges for individuals with lower overall connectivity, a proportional threshold may induce more

randomness in the resulting network [22].

Given these issues, we analysed networks constructed using the two different thresholding proce-

dures: absolute and proportional. Further, for both procedures we considered two distinct threshold

values (i.e. different r(i)s), chosen to yield average node degrees of K = 3 and K = 5. The value of

K = 3 corresponds to the efficiency-cost optimization (ECO) criterion [24]; this aims to optimise the

trade-off between the efficiency of a network and its density, or wiring cost. The value of K = 5 has

been used in previous applications of ERGMs to resting-state functional connectivity [11, 12].

2.2.1 Group-representative network construction

In order to contrast our framework with existing methods, we also constructed group-representative

networks (GRN) following Achard et al. [3] (mean-GRN) and Song et al. [4] (median-GRN). The

mean-GRN and median-GRN take the mean and median, respectively, of the correlation matrices

across all individuals within the group (young and old) and then threshold these group mean and

median matrices to yield networks with average node degrees of K = 3 and K = 5. Explicitly,

CCCmean
kl = 1

n

∑
iCCC

(i)
kl and CCCmedian

kl = median({CCC(i)
kl : ∀i}), with associated adjacency matrices. These

approaches produce a single network for each group, which can be modelled as an ERGM and we can

compare the respective GRN-ERGM parameters.

2.3 Exponential random graph model specification

The probability mass function of a network YYY under an ERGM is given by π(yyy|θ) where

π(yyy|θ) =
exp

{
θT s(yyy)

}
Z(θ)

. (2)

Here, s(yyy) is a vector of p network summary statistics, θ ∈ Θ ⊆ Rp is a vector of p corresponding model

parameters that must be estimated from the data and Z(θ) =
∑

yyy′∈Y exp
{
θT s(yyy′)

}
is the normalising

constant ensuring the probability mass function sums to one. Given data, that is, an observation yyy

of YYY , the goal is to infer which values of θ best correspond to the data under this distribution. The

summary statistics included in a given ERGM represent those configurations expected to appear more

frequently or less frequently than in a random graph. In other words, the choice of summary statistics

is a modelling decision; it reflects our belief of how the global network structure may be summarised

and is driven by the context of the network. The flexibility of ERGMs derives from the range and

number of possible summary statistics that can be used [25].

In what follows, we work in the Bayesian paradigm, treating the model parameters θ as random
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variables. The Bayesian formulation of ERGMs was first suggested by Koskinen [26] and then expanded

upon by Caimo & Friel [27]. Through the machinery of Bayesian hierarchical modelling, this provides

a natural framework for describing the joint distribution of a group of networks. To fully specify a

Bayesian ERGM, we need only augment the definition in (2) with a prior distribution π(θ) for the

model parameters. Given an observation yyy of the network, we can then perform inference by analysing

the posterior distribution π(θ|yyy). Through Bayes’ rule, we may write the posterior as

π(θ|yyy) =
π(yyy|θ)π(θθθ)

π(yyy)

=
exp

{
θT s(yyy)

}
π(θ)

Z(θ)π(yyy)

(3)

where π(yyy) =
∫

Θ π(yyy|θ)π(θ)dθ is the model evidence. Although the posterior distribution is generally

not available in a closed-form expression, one may obtain samples from the posterior through a Markov

chain Monte Carlo method known as the exchange algorithm [28].

For the absolute thresholding our exponential random graph model (which is common to all in-

dividuals and groups) uses three summary statistics; these have previously been applied to single

brain functional connectivity networks [11, 29]. The three summary statistics used are: number of

edges (E); geometrically weighted edgewise shared partners (GWESP); and geometrically weighted

non-edgewise shared partners (GWNSP). For the proportional thresholding, we fixed the number of

edges and modelled the network using two summary statistics: GWESP and GWNSP.

The number of edges E =
∑

k<l Ykl characterises the sparsity of the network. When using an

absolute threshold, it is important to include this term in the model in order to account for differences

in the network density across individuals. When using a proportional threshold, however, each indi-

vidual network is constructed to have a predetermined density. As a result, the number of edges E is

constrained to be the same across each network. In this case, we therefore opted not to include the

summary statistic in the model, constraining the space of networks to those with the same number of

edges as those observed. In other words, the model describes a probability distribution over networks

with a given average node degree K. Note that this in contrast to previous applications of ERGMs in

neuroimaging, which include the number of edges in the model despite using a proportional threshold

[11, 12].

The geometrically weighted edgewise shared partner (GWESP) statistic of a network yyy is a measure

of network transitivity (or clustering) and is given by:

GWESP (yyy) = eτ1
V−2∑
w=1

{
1− (1− e−τ1)w

}
EPw(yyy) (4)

where EPw(yyy) is the number of connected node pairs having exactly w shared partners and τ1 > 0

is a decay parameter. The decay parameter τ1 serves to diminish the effect of the network having

more higher-order edgewise shared partners relative to lower-order edgewise shared partners. In other

words, the increase in GWESP from adding a single edge is smaller if the edge adds a shared partner

to connected nodes that already share many partners.

The geometrically weighted non-edgewise shared partner (GWNSP) statistic is similarly defined

as

GWNSP (yyy) = eτ2
V−2∑
w=1

{
1− (1− e−τ2)w

}
NPw(yyy) (5)
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where NPw(yyy) is the number of non-connected node pairs having exactly w shared partners and

τ2 > 0 is a decay parameter. GWNSP is related to global network efficiency; a higher value of

GWNSP indicates that non-connected nodes are more likely to have a shared partner.

While it is possible to treat the decay parameters for both geometrically weighted statistics as

extra model parameters (leading to curved ERGMs [30]), this increases the computational burden

substantially. The decay parameters were therefore fixed at τ1 = τ2 = 0.75, as these values have

previously been found to result in better fitting models for networks constructed from the AAL atlas

[11].

2.4 Multi-level (hierarchical) framework

The Bayesian exponential random graph model described above provides a flexible family of distri-

butions for a single network. Our goal is to extend this to a model for a population of networks.

Our proposed approach is simple: represent each network as a separate ERGM within a Bayesian

multilevel (or hierarchical) model. By pooling information across individual networks, this approach

allows us to characterise the distribution of the whole population.

We model each individual network YYY (i) as an exponential random graph with model parameter

θ(i). Importantly, each individual ERGM must consist of the same set of summary statistics s(·). The

probability mass function of each network can then be written

π(yyy(i)|θ(i)) =
exp

{
θ(i)T s(yyy(i))

}
Z(θ(i))

, i = 1, . . . , n. (6)

This specifies the data-generating process for each individual network. To obtain a joint distribution

for the set of networks, we assume that, conditional on their respective individual-level parameters,

the YYY (i) are independent. Thus, the sampling distribution for the set of networks Y is simply the

product of the individual probability mass functions:

π(y|θθθ) =
n∏
i=1

π(yyy(i)|θ(i))

=
exp

{∑n
i=1 θ

(i)T s(yyy(i))
}∏n

i=1 Z(θ(i))
.

(7)

First level of the multi-level model (within group)

To model a group of networks we need to specify the prior distribution of the individual-level ERGM

parameters θ(1), . . . , θ(nj) (for individuals 1, . . . , nj in group j). To this end, we propose a multilevel

model such that θ(1), . . . , θ(n) are drawn from a common population-level Normal distribution with

parameters φ = (µmulti,ΣΣΣθ), which are also treated as random variables. We write

θ(i) ∼ π(·|φ), i = 1, . . . , nj (8)

for the population-level distribution. Assuming that, conditional on φ, the θ(i) are independent, we

have

π(θθθ|φ) =

nj∏
i=1

π(θ(i)|φ). (9)
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YYY (1) ... YYY (nj)

θ(1) θ(nj)...

φ

Figure 1: A diagrammatic representation of the hierarchical framework. Each network YYY (i) is modelled
as an exponential random graph with individual-level parameter θ(i). In turn, each θi is assumed to
come from a common population-level distribution with hyperparameter φ.

Finally, write π(φ) for the (hyper)prior distribution of φ. The joint distribution of (Y , θθθ, φ) can be

written as π(y, θθθ, φ) = π(y|θθθ)π(θθθ|φ)π(φ). See Figure 1 for a diagrammatic representation of the full

hierarchical framework. Full details of the prior specifications can be found in the Supplementary

Material.

Second level of the multi-level model (between group)

To extend the model for multiple groups of within a population, we add another level to the hierarchy.

Denoting θ(i,j) to be the (vector-valued) ERGM parameter for the ith individual in the jth group, we

assume θ(i,j) ∼ N (µ
(j)
multi,ΣΣΣθ). Thus, we assume different group-level means but the same covariance

structure across groups (our framework allows per-group covariance, but the sample size of our illus-

trative example leads us to a common covariance). Writing φ(j) = (µ
(j)
multi,Σθ), we then complete the

model by specifying the group-level prior φ(j) ∼ π(·|φpop) and population-level hyperprior π(φpop).

Full details of the prior specifications can be found in the Supplementary Material.

2.5 Model fitting and comparison to alternative approaches

To generate samples from the joint posterior distribution, we devised a novel MCMC algorithm, the

details of which can be found in (Lehmann, 2019) [31]. We used our algorithm to generate posterior

samples for two sets of networks. The first set consisted of a single group of networks from the 100

youngest individuals in the Cam-CAN study (a one-level model), while the second set also included

the networks from the 100 oldest individuals (a two-level model).

One-level model for young group

For the single-group dataset, we derived estimates for the posterior mean and 95% credible regions

for each pair of components of the group-level parameter µmulti using our multi-BERGM model with

one-level (i.e. individuals nested within one group).
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In order to compare our method with existing approaches, we also generated posterior samples

for the same (using three summary statistics defined earlier) Bayesian ERGM fit to the mean-GRN,

µmean-GRN, and median-GRN, µmedian-GRN.

We also compare our method, which generates a full posterior distribution for µ and Σ, to a

mean-BERGM approach. Specifically, we fit a BERGM to each individual within the group (i.e. we

fit n1 = 100 separate single-BERGMs and obtain 100 separate sets of posterior samples {θ(i)
t }Tt=1

for i = 1, . . . , 100). The original proposal of this approach used frequentist ERGMs, giving a point

estimate per individual [11]. The Bayesian approach we use yields a separate posterior per individual,

which can then be combined into a group-level estimate µmean-BERGM ∼ N (µ̄, Σ̂ΣΣ) with mean

µ̄ =
1

n

n∑
i=1

θ̄(i)

and covariance

Σ̂ΣΣ =
1

T − 1

T∑
t=1

(µt − µ̄)2 +
1

T

T∑
t=1

[
1

n(n− 1)

n∑
i=1

(θ
(i)
t − µt)2

]
.

where θ̄(i) = 1
T

∑T
t=1 θ

(i)
t and µt = 1

n

∑n
i=1 θ

(i)
t .

Two-level model for young and old groups

For the two-group dataset, we used the two-level multi-BERGM model and derived posterior density

estimates for the group-level mean parameters µ
(1)
multi, µ

(2)
multi, thus providing a way to compare the

connectivity structure across the two groups. We also applied the mean-BERGM approach to the

group of old individuals, i.e. we fit a single-BERGM to each individual within the old group and used

the resulting posterior samples to construct a group-level estimate (see previous section).

2.6 Goodness-of-fit assessment

For the single-group dataset, we assessed the goodness-of-fit of the posterior distribution to the data

by simulating networks from the posterior predictive distribution and comparing the network metrics

of these simulated networks to those of the observed networks. Specifically, we chose uniformly at

random S = 1000 samples µ1, . . . , µS generated from the posterior distribution of the group-level

parameter µmulti. For each sample, s, we also randomly selected (uniformly, with replacement) an

individual is and then simulated a network YYY (s) from the ERGM with parameter µs + θ
(is)
s . We

compared the simulated networks to the observed networks based on three network metrics: degree

distribution, geodesic distance distribution (length of shortest paths) and edge-wise shared partners

distribution (note these are different to, but highly correlated with, the summary statistics used to

define the ERGM).

It is possible to assess goodness-of-fit on any network metrics by comparing simulated networks to

observed networks. Since age-related differences in local efficiency [32, 33, 34, 35] and global efficiency

[32, 35] have previously been observed, we assessed the goodness-of-fit for the two-group dataset

in terms of these two metrics. For both groups, we chose uniformly at random S = 1000 samples

µ
(j)
1 , . . . , µ

(j)
S generated from the posterior distribution of the group-level parameter µ

(j)
multi. For each

sample, we simulated a network YYY (j,s) from the ERGM with parameter µ
(j)
s , and compared the local

and global efficiency of the simulated networks to the observed networks.

9



2.7 Availability of data and code

Access to the Cam-CAN dataset for the purpose of scientific investigation, teaching or the planning of

clinical research studies can be requested at https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/datarequest.php.

The code to fit the Bayesian multilevel framework with exponential random graph models is available

to download as an R package at https://github.com/brieuclehmann/multibergm. The scripts used to

generate the results for this paper are available at https://doi.org/10.6084/m9.figshare.11919072.v1.

3 Results

We performed analyses for two populations of networks, the first with a single group (young only) and

the second with two groups (young and old). Both the one and two group settings were considered

under two different thresholding procedures (absolute and proportional) and two different threshold

values (chosen to yield average node degrees of K = 3 and K = 5); resulting in eight sets of networks

that we analysed using our multi-BERGM framework. In this section we present the results of the

analyses performed on the sets of networks constructed under absolute thresholding with a population-

wide average node degree of K = 3. The other results can be found in the Supplementary Material.

In the context of this paper the supplementary results are in line with those presented here, except

where explicitly stated.

For the single-group setting we compare our method, specifically the estimated ERGM parameters,

to several alternative approaches from the literature.

Single-group mean ERGM parameter estimation

We first consider the point estimate of the ERGM parameters, µ, for the young only (i.e. single-group

setting) under various approaches: our one-level multi-BERGM framework; the mean-BERGM, the

mean-GRN BERGM; the median-GRN BERGM; and the distribution of point estimates (posterior

sample mean) from a single-BERGM fitted to each individual’s network. Briefly, multi-BERGM fits

all the model parameters simultaneously in a multilevel framework; mean-BERGM combines estimates

from the separate single-BERGM fits; mean-GRN and median-GRN are single-BERGM fits on the

group-representative mean and median networks respectively (see Section 2.5 for details).

Figure 2 presents the three components of µ (corresponding to the three summary statistics)

showing the mean-BERGM estimate (blue dotted line); the posterior sample means of the one-level

multi-BERGM (red line), the mean-GRN BERGM (green dashed line), and the median-GRN BERGM

(purple dashed line); and the distribution of posterior sample means for single-BERGM fitted to each

individual (grey histogram).

The multi-BERGM estimates are very close to the mean-BERGM estimates, i.e. the centre of the

posterior mean values across the individual network fits (single-BERGMs). In contrast, the posterior

means of the edges and GWESP components for the mean-GRN and median-GRN are in the tails

of single-BERGM distribution. Similar results were observed under the proportional thresholding

procedures while the estimates under absolute thresholding with average node degree K = 5 were

similar under each of the approaches (see Supplementary Material Figure A.1). This suggests that

the mean-GRN and median-GRN do not always accurately capture the topological structure of the

majority of the individual networks.
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Figure 2: Posterior mean estimates of models fit to networks constructed under absolute thresholding
with group-wide average node degree K = 3. The histogram (grey bars) corresponds to the single-
BERGM posterior mean values of the model parameters fitted to each of the n = 100 individual
networks. The vertical lines correspond to the posterior mean values of group-level mean parameter
under multi-BERGM (red line), mean-BERGM (blue dotted line), mean-GRN BERGM (green dashed
line) and median-GRN BERGM (purple dashed line). For each of the model components, the posterior
mean under multi-BERGM lay close to the mean-BERGM estimate, i.e. the centre of the single-
BERGM mean values. In contrast, for the edges and GWESP components, posterior means for the
mean-GRN BERGM and median-GRN BERGM lay in the tails of the single-BERGM mean values.

Individual-level covariance under multi-BERGM and single-BERGM

We consider the covariance of the posterior distribution of the individual-level parameters for three

randomly selected participants under our multi-BERGM approach compared to the distribution from

the single-BERGM fits. For each approach, we calculated 95% credible regions for each pair of model

components based on the respective posterior samples.

While the mean values were similar between the multi-BERGM and single-BERGM distributions,

the multi-BERGM yielded tighter credible regions (Figure 3). This illustrates one of the benefits of

modelling the networks simultaneously: the borrowing of information across individuals leads to more

precise estimates of the model parameters. The credible regions derived from the other thresholding

procedures were similar or tighter under multi-BERGM compared to single-BERGM (see Supplemen-

tary Material Figure A.2).

Single-group covariance under multi-BERGM and mean-BERGM

We consider the covariance of the posterior distribution under our multi-BERGM approach compared

to the mean-BERGM distribution constructed from the posterior samples of the single-BERGMs for

each individual. From the posterior samples for the multi-BERGM, we calculated 95% credible regions

for each pair of model components. For the mean-BERGM approach, we calculate a 95% region from

a normal distribution with mean and covariance based on the single-BERGM fits for each individual.

While the mean values were similar between the multi-BERGM and mean-BERGM distributions,

the multi-BERGM yielded moderately tighter credible regions (Figure 4). This again illustrates how

the borrowing of information across individuals can lead to more precise estimates of the model

parameters. The credible regions derived from the other thresholding procedures were similar or

tighter under multi-BERGM compared to the mean-BERGM approach (see Supplementary Material

Figure A.3).
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Figure 3: Posterior means and 95% credible regions of the individual-level parameters for three subjects
and for each pair of model components under the multi-BERGM (dot and solid line) and under the
single-BERGM (cross and dashed line) approaches. The correlation between parameter estimates is
shown by the elliptical shape of the regions.
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Single-group goodness-of-fit under multi-BERGM

To assess the goodness-of-fit under multi-BERGM, we simulated networks from the ERGM with pa-

rameters taken uniformly at random from the posterior samples. The simulated networks appeared

broadly similar to the observed networks in terms of the network metrics we considered: degree dis-

tribution, geodesic distance distribution and edgewise-shared partner distribution (Figure 5). This

indicates that the group-level posterior distribution adequately captured the important network char-

acteristics across the entire group of individuals. Similar results were observed under the remaining

three thresholding procedures (see Supplementary Material Figures A.4-A.6).

Two-group multi-BERGM: group differences

Using a two-level multi-BERGM framework we obtain posteriors for the group-level ERGM parame-

ters. These posterior distributions reveal that network differences between the young group and the old

group are driven by differences in the GWNSP parameter (Figure 6). In particular, the posteriors for

the edges and GWESP parameters are almost identical for the two groups, while the GWNSP parame-

ter is markedly larger for the young group. This difference in the group-level GWNSP parameters was

also observed under the remaining three thresholding procedures (Supplementary Figures A.8-A.9).

By considering the posterior distribution of difference in the group-level parameters, µ1−µ2, we also

calculated 95% credible regions to assess the degree of certainty in the group differences under both the

multi-BERGM and the mean-BERGM approaches (Figure 7). The left panel shows that difference

in the (edges-GWESP) pair of parameters is centered on zero, while the middle and right panels

demonstrate that, under the multi-BERGM approach, the credible regions for the (GWESP-GWNSP)

and (GWNSP-edges) pair do not contain zero. This provides evidence that the group-level differences

in network structure are driven by the differences in GWNSP. We note that a permutation testing

approach based on single-BERGM and single-ERGM fits also found the strongest group difference

between the GWNSP parameter estimates (Supplementary Table A.1).

Under the mean-BERGM approach, the credible regions are slightly wider and contain zero for each

pair of parameters. This again highlights the benefit of more precise estimates of the model parameters

via the multi-BERGM approach by modelling the networks simultaneously. Similar results were

observed under absolute thresholding with average node degree K = 5 but no significant differences

were found under proportional thresholding (Figure A.11)

Age-related differences in both local efficiency [32, 33, 34, 35] and global efficiency [32, 35] have

previously been observed. To check whether the multi-BERGM approach could identify similar age-

related group differences, we also simulated S = 1000 networks for each group from the ERGM with

parameters taken uniformly at random from the group-level posterior samples. Overall, the simulated

networks for the young group exhibited higher global and local efficiency, in correspondence with the

observed data (Figure 8). Similar results were observed for networks constructed via absolute thresh-

olding with average node degree K = 5 (Supplementary Figure A.12). Under proportional thresh-

olding, however, the posterior predictive distribution of local and global efficiency did not correspond

well with the observed networks, indicating a poor model fit (Supplementary Figures A.13-A.14).

Based on the results from previous sections, we have shown that the various GRN methods do not

properly reflect the distribution of individual ERGMs, and hence we do not consider group differences

under these alternative approaches.
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Figure 5: Goodness-of-fit assessment of the multi-BERGM for a single group. S = 1000 networks
were generated from the ERGM with model parameters sampled from the respective group-level
distributions. The simulated networks are compared to the observed data (shown in the box plots)
across three network metrics: degree distribution, geodesic distance distribution, edge-wise shared
partner distribution. The lines correspond to the respective means across the simulated networks,
while the ribbons correspond to 95% credible intervals.
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4 Discussion

The characterisation of connectivity structure at a group level is a necessary step towards understand-

ing how the brain changes with a given phenotype such as age, disease condition or mental state. We

have proposed multi-BERGM, a multi-level (hierarchical) Bayesian framework based on exponential

random graph models (ERGMs), as a coherent method for understanding group level connectivity.

By pooling information across the individual networks, this framework provides a principled (and

extendable) approach to model the relational structure for groups of networks.

Our work builds on an previous approaches attempting to investigate differences between groups of

networks, either by constructing a group-representative network (GRN) [3, 4, 5, 6, 7] or by combining

separate individual-level estimates, e.g. mean-ERGM [12, 13]. There are three main advantages of our

framework: using the Bayesian paradigm allows us to formally quantify uncertainty in the group-level

model parameters; the group-level posterior densities provide a way to directly compare connectivity

structure across groups; and the multi-level (hierarchical) framework allows information to be borrowed

across individuals thus, in principle, improving the accuracy of the parameter estimates.

In line with previous findings [12, 8], our results illustrate that the mean-GRN and median-

GRN approaches for constructing group-representative networks do not accurately characterise the

topological structure of the individual networks. This is at least partially due to the quasi linearity of

the thresholding operation used to construct the networks: the expectation of thresholded correlation

matrices will not in general be equal to the network constructed by thresholding the expectation of

the correlation matrices [8]. As a result, the network metrics from such a GRN will not accurately

summarise the topological information across the individual networks.

Our proposed method takes as input any group of unweighted networks. While there are a variety

of methods to construct networks from functional neuroimaging data, each with their own benefits

and disadvantages, we took the most common and simple approach of applying a threshold to the

correlation matrices, keeping edges between nodes that exhibited a sufficiently strong positive corre-

lation. The choice of threshold can have a significant impact on the resulting connectivity structure

[21, 22] and we found that different threshold values did indeed lead to small differences in the pos-

terior distribution of the model parameter. Regardless of the threshold used, our approach provides
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a framework to characterise the group-level brain connectivity structure, though further investigation

into the effect of thresholding procedure on ERGM parameter estimates is warranted.

From a modelling perspective, the appropriate selection of summary statistics is crucial. This is

true of fitting ERGMs to single networks, let alone populations of networks. Moreover, the ‘correct’

choice likely depends on the network construction method. We used three summary statistics: the

number of edges, the geometrically-weighted edgewise shared partners (GWESP) statistic and the

geometrically-weighted non-edgewise shared partners (GWNSP) statistic. The choice of summary

statistics follows Simpson et al. [11], in which this particular combination was selected via a graphical

goodness-of-fit approach, with the ‘best’ metrics chosen from a prespecified set of potential metrics.

While it is possible to perform Bayesian model selection for an ERGM on a single network [36, 37],

further work is needed to extend these approaches to perform model selection for a group of networks.

Although ERGMs provide a concise representation of network data via a set of summary statistics,

the biological interpretation of these summary statistics requires some care. The number of edges cor-

responds to overall network density and is a natural measure of connectedness. The GWESP/GWNSP

statistics are weighted sums of the number of connected/non-connected node pairs having exactly w

shared partners. The GWESP statistic quantifies the propensity to form triangles and is thus a mea-

sure of local clustering (functional segregation). The GWNSP statistic can be seen as an indirect

measure of global network efficiency (functional integration); a higher value of GWNSP indicates that

non-connected nodes are more likely to have a shared partner. Both GWNSP and GWESP were

highly correlated with local as well as global network efficiency (Supplementary Table A.2) for the 200

networks constructed under absolute thresholding with average node degree K = 3. This is in line

with previous work [13] which concluded that it may not be possible to uniquely relate GWNSP and

GWESP to global and local efficiency respectively. Note however that GWESP and GWNSP were also

highly correlated with each other. In fact, when Spearman’s partial correlation is used, the correlation

between GWNSP and local efficiency (controlling for GWESP) is close to zero while the correlation

between GWNSP and global efficiency is still strong (see Supplementary Tables A.3-A.4). Similarly,

the correlation between GWESP and local efficiency (controlling for GWNSP) is close to zero while

the correlation between GWESP and global efficiency is moderately large. These results indicate that

GWNSP and GWESP are indeed useful surrogates for global and local efficiency respectively.

The parameter estimates obtained from the fitting procedure quantify the relative influence of

the corresponding summary statistics on the overall network structure. To be precise, the parameter

estimates represent the estimated change in log-odds of an edge existing for each unit increase of the

corresponding summary statistic. The negative estimates for the edges parameter corresponds to a

lower expected edge density relative to a random graph in which each edge exists with probability 1/2.

Note that this relates strongly to the overall sparsity of the network and is thus highly dependent on the

threshold level used. The positive estimates for the GWESP parameter indicate that many connections

contribute to the formation of clusters in the brain. This corresponds to the well-established local

efficiency and functional segregation of the brain [1, 38]. The negative estimates for the GWNSP

parameter suggest that pairs of non-connected nodes sharing one or more neighbours are relatively

uncommon. The lower estimates of this parameter for the old group indicate lower levels of functional

integration. Note that the parameter estimates, as well as the corresponding summary statistics, are

strongly correlated, so caution should be exercised when interpreting the estimates independently.

A graphical assessment of the model indicated a reasonable goodness-of-fit under constant thresh-

olding. In particular, the model was able to recover differences in observed global and local efficiency,
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which were both higher in the young group than the old group. The observed age-related decrease

in local efficiency is in line with previous studies [32, 33, 34, 35]. A decline in global efficiency has

also been observed previously [32, 35], though not in other studies [33, 34]. In our study, the thresh-

olding method had a pronounced effect on the observed age-differences. Under constant thresholding,

we observed a clear difference in global efficiency between the two age groups and a relatively small

difference in local efficiency. Under proportional thresholding, however, both local and global effi-

ciency were slightly lower for the young group. The disparities between thresholding procedures may

be associated with alterations in mean connectivity due to age-related differences in vascular health

[9], while the discrepancies with previous studies are likely due to differences in network construction

including the parcellation and definition of functional connectivity.

Future research will be needed to extend our approach to alternative settings. For example, the

flexibility of Bayesian hierarchical modelling could be exploited to deal with continuous covariates or

more complex group structures such as factorial designs. Given multiple networks per individual, one

could extend the framework by adding another layer to the model. Specifically, one could again posit an

ERGM for each network observation, with individual-level parameters to pool information for networks

on the same individual and group-level parameters to pool information across several individuals. It

would then be possible to apply our framework to dynamic functional connectivity or task-based

scans in order to query how connectivity structure changes with time or across states. Although our

framework is currently limited to binary networks, more work is needed to handle weighted networks

(thus bypassing the thresholding issue). A promising avenue for this is the development of weighted

ERGMs [39, 40], though the associated computational cost is likely to be prohibitive.

A downside to our framework, especially compared to the single-(B)ERGM and GRN approaches,

is in terms of computation cost. Using a 40-core computing cluster (Intel Xeon E7-8860 v3, 2.2 GHz),

the algorithm took between 8 and 12 hours to produce the posterior samples for each multi-BERGM

(with additional time to tune the Bayesian procedure). However, Krivitsky & Handcock [41] provide

empirical evidence suggesting the computational cost may grow on the order of p(N+E) log(E) where

p is the number of summary statistics, N is the number of nodes, and E is the (typical) number of

edges (as well as increase roughly linearly in the number of networks, n). In practical terms this limits

the size of networks that our framework can currently handle to relatively coarse parcellations of the

brain (approximately 100 regions). Note that the computational cost also increases with the density

of the networks. The efficiency cost optimisation (ECO) criterion, corresponding to an average node

degree of K = 3, offers a principled threshold that yields sparse networks while maintaining their

essential structure [24]. Improving the efficiency of fitting (B)ERGMs is an ongoing area of research

[42, 43, 44] and our framework will benefit from ongoing developments and may be applicable to more

spatially resolved networks in the future. The code used to apply our framework is available as an R

package at https://github.com/brieuclehmann/multibergm.
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A Supplementary Material

A.1 Prior specification

The choice of prior distributions for Bayesian ERGMs has yet to be studied in any great detail. The

appropriate setting of priors is a challenging task due to the typically high levels of dependence between

parameters [45]. Studies thus far have generally assumed (flat) multivariate normal prior distribution

on the model parameters [27, 5, 46]. For simplicity, we also assume multivariate normal priors, though

alternative specifications fully warrant further investigation.

Single group

For the single-group model, we assume

θ(i) ∼ N (µ,ΣΣΣθ), i = 1, . . . , n. (10)

For the hyperprior distribution of φ = (µ,ΣΣΣθ), we assume a partially conjugate prior. This assumes

µ and ΣΣΣθ are a priori independent, placing a multivariate normal prior on µ and an inverse-Wishart

prior on ΨΨΨ:

µ ∼ N (µ0,ΣΣΣµ)

ΣΣΣθ ∼ W−1(ΨΨΨθ, νθ)
(11)

where µ0 ∈ Rp, νθ ∈ R is such that νθ > p−1, and ΣΣΣµ,ΨΨΨθ are constant, p×p positive-definite matrices.

These choices of hyperpriors are motivated by simplicity as well as computational convenience.

We set νθ = p and use an empirical approach to set the hyperparameters (µ0,ΣΣΣµ,ΨΨΨθ). We do

this by first fitting a single Bayesian ERGM to each network, using the Bergm package [47], with

the same summary statistics as in the full multilevel model. For each network yyy(i), we produced

K = 15000 samples {θ(i)
k }

K
k=1 from their respective posterior distributions π(θ(i)|yyy(i)). In particular,

we obtained estimates θ̄(i) = 1
K

∑K
k=1 θ

(i)
k of the mean and Σ̂ΣΣ

(i)
= 1

K−1

∑K
k=1(θ

(i)
k − θ̄

(i))(θ
(i)
k − θ̄

(i))T

of the covariance for the posterior distribution from each network. Writing µ̄ = 1
n

∑n
k=1 θ̄

(i), we then

set µ0 = µ̄, ΣΣΣµ =
∑

i Σ̂ΣΣ
(i)

and ΨΨΨθ = 1
n−1

∑n
i=1(θ̄(i) − µ̄)(θ̄(i) − µ̄)T .

Multiple groups

For the multiple-group model, we assume

θ(i,j) ∼ N (µ(j),ΣΣΣθ), j = 1, 2, i = 1, . . . , nj . (12)

For the group-level prior distribution of φ(j) = (µ(j),ΣΣΣθ), we assume a partially conjugate prior. This

assumes µ(j) and ΣΣΣθ are a priori independent, placing a multivariate normal prior on µ(j) and an

inverse-Wishart prior on ΨΨΨ:

µ(j) ∼ N (µpop,ΣΣΣµ)

ΣΣΣθ ∼ W−1(ΨΨΨθ, νθ)
(13)

where µpop ∈ Rp, νθ ∈ R is such that νθ > p−1, and ΣΣΣµ,ΨΨΨθ are constant, p×p positive-definite matrices.

These choices of hyperpriors are motivated by simplicity as well as computational convenience. Finally,
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we specify a hyperprior on (µpop,Σµ) of

µpop ∼ N (µ0,Λ)

ΣΣΣµ ∼ W−1(ΨΨΨµ, νµ)
(14)

where µ0 ∈ Rp and Λ is a constant, p× p positive-definite matrix.

We set νθ = p, νµ = p,Λ = Ip and use an empirical approach to set the hyperparameters

(µ0,ΨΨΨµ,ΨΨΨθ). We do this by first fitting a single Bayesian ERGM to each network, using the Bergm

package [47], with the same summary statistics as in the full multilevel model. For each network

yyy(i) (ignoring any group membership), we produced K = 15000 samples {θ(i)
k }

K
k=1 from their re-

spective posterior distributions π(θ(i)|yyy(i)). In particular, we obtained estimates θ̄(i) = 1
K

∑K
k=1 θ

(i)
k

of the posterior mean from each network. Writing µ̄ = 1
n

∑n
k=1 θ̄

(i), we then set µ0 = µ̄ and

ΨΨΨµ = ΨΨΨθ = 1
n−1

∑n
i=1(θ̄(i) − µ̄)(θ̄(i) − µ̄)T .
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A.2 Supplementary results

Single-group mean ERGM parameter estimation

(a) Absolute threshold - K = 5
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Figure A.1: Posterior mean estimates of models fit to networks constructed under a) absolute thresh-
olding with group-wide average node degree K = 5, b) proportional thresholding with average node
degree K = 3 and c) proportional thresholding with average node degree K = 5. The histogram
(grey bars) corresponds to the posterior mean values of the model parameters fitted to each of the
n = 100 individual networks. The vertical lines correspond to the posterior mean values of group-
level mean parameter under multi-BERGM (red line), mean-BERGM (blue dotted line), mean-GRN
BERGM (green dashed line) and median-GRN BERGM (purple dashed line). Under absolute thresh-
olding with average node degree K = 5, the posterior mean estimates were broadly similar for each
approach. Under proportional thresholding, however, while the posterior mean under multi-BERGM
lay close to the mean-BERGM estimate, i.e. the centre of the single-BERGM mean values the pos-
terior means for the mean-GRN BERGM and median-GRN BERGM lay more in the tails of the
single-BERGM mean values.
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Individual-level covariance under multi-BERGM and single-BERGM

(a) Absolute threshold - K = 5
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Figure A.2: Posterior means and 95% credible regions of the individual-level parameters for three
subjects and for each pair of model components under the multi-BERGM (dot and solid line) and
under the single-BERGM (cross and dashed line) approaches.
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Single-group covariance under multi-BERGM and mean-BERGM

(a) Absolute threshold - K = 5
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Figure A.3: Posterior means and 95% credible regions of the group-level mean parameters for each
pair of model components under the multi-BERGM (dot and solid line) and under the mean-BERGM
(cross and dashed line) approaches.
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Single-group goodness-of-fit under multi-BERGM
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Figure A.4: Absolute threshold with group-wide average node degree K = 5. Goodness-of-fit assess-
ment of the multi-BERGM for a single group. S = 200 networks were generated from the ERGM with
model parameters sampled from the respective group-level distributions. The simulated networks are
compared to the observed data (shown in the box plots) across three network metrics: degree dis-
tribution, geodesic distance distribution, edge-wise shared partner distribution. The lines correspond
to the respective means across the simulated networks, while the ribbons correspond to 95% credible
intervals.

29



●

●●

●

●
●

●

●

●

●●●
●
●
●●●●●●●● ●●●●●

●
●● ●●●●● ●●●●●●

●
●
●
●●●●●●●●●●
●●● ●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●● ●●●●● ● ●● ●

●

● ●

●
●

● ●

●●
●●

●
●

●

●

●●●●
●●●●

●
●
●
●

●

●

●●
●
●

●

●
●●
●●

●

●●●
●●

●●
●

●

● ●
●

●●
●●

●

●

●●●●●●●●
●
●
●
●●●●

●

● ●
●
●
●●

●

●●●●●●●●●●

●

● ●
●●●
●

●●●●●●
●
● ●●●●●●● ●●● ●●

●

● ●
●

●

●

●●

●●●

●
●
●●

●

●
●

●

●
●

●
●

●

●

● ●

●●●
●●●

●

●●
●

●
●

●
●●●●●●●●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●●●●
●
●

●●
●
●●●●

●
●●●●
●
●
●
●●

●

● ●●● ●
●

esp

distance

degree

0 5 10 15

0 5 10 15 20

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0.00

0.05

0.10

0.0

0.1

0.2

0.3

0.4

k

P
ro

ba
bi

lit
y

Figure A.5: Proportional threshold with average node degree K = 3. Goodness-of-fit assessment
of the multi-BERGM for a single group. S = 200 networks were generated from the ERGM with
model parameters sampled from the respective group-level distributions. The simulated networks are
compared to the observed data (shown in the box plots) across three network metrics: degree dis-
tribution, geodesic distance distribution, edge-wise shared partner distribution. The lines correspond
to the respective means across the simulated networks, while the ribbons correspond to 95% credible
intervals.
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Figure A.6: Proportional threshold with average node degree K = 5. Goodness-of-fit assessment
of the multi-BERGM for a single group. S = 200 networks were generated from the ERGM with
model parameters sampled from the respective group-level distributions. The simulated networks are
compared to the observed data (shown in the box plots) across three network metrics: degree dis-
tribution, geodesic distance distribution, edge-wise shared partner distribution. The lines correspond
to the respective means across the simulated networks, while the ribbons correspond to 95% credible
intervals.
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Two-group multi-BERGM: group differences

We used the ergm R package [48, 49] to fit (frequentist) single-ERGMs to the networks constructed

using absolute thresholding with average node degree K=3. We found that the Bayesian framework

exhibited more robust convergence properties for parameter estimation, with estimation using the

frequentist ERGM failing to converge for approximately 20% of the networks. Note that failure to

converge was either detected automatically by the ergm R package or assessed via manual inspection

of Markov chain Monte Carlo diagnostic plots. For the vast majority of the remaining networks, the

maximum likelihood estimate was very close to the posterior mean obtained using the Bayesian ERGM

(Figure A.7).

Figure A.7: The maximum likelihood estimates for the single-ERGM fits against the posterior mean
estimates for single-BERGM fits for the networks constructed under absolute thresholding with average
node degree K = 3.

We performed permutation t-tests (100,000 permutations) for both the single-ERGM fits and the

single-BERGM fits. Note that we removed the estimates in the single-ERGM fits for which the

estimation procedure failed to converge. Consistent with the main results, we find that the strongest

group difference occurs between the gwnsp parameter estimates (Table A.1). The p-values for the

single-ERGM t-tests are in general larger, reflecting the reduced sample size due to the unconverged

parameter estimates.

single-ERGM single-BERGM
µ̄young − µ̄old p-value µ̄young − µ̄old p-value

edges 0.027 0.746 -0.026 0.702
gwesp 0.001 0.982 0.028 0.328
gwnsp 0.051 0.066 0.072 0.007

Table A.1: Group differences in mean maximum likelihood estimate and posterior mean estimates for
the single-ERGM and single-BERGM fits respectively on networks constructed under absolute thresh-
olding with average node degree K = 3. The reported p-values were calculated using a nonparametric
permutation t-test.
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Figure A.8: Posterior density estimates under multi-BERGM for the group-level mean parameters
for networks constructed via absolute thresholding with average node degree K = 5. The edges and
GWNSP parameters were moderately larger for the young group while the GWESP parameter was
larger for the old group.
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Figure A.9: Posterior density estimates under multi-BERGM for the group-level mean parameters
for networks constructed via proportional thresholding with average node degree K = 3. Both the
GWESP and GWNSP parameters were moderately larger for the young group.
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Figure A.10: Posterior density estimates under multi-BERGM for the group-level mean parameters
for networks constructed via proportional thresholding with average node degree K = 5. Both the
GWESP and GWNSP parameters were moderately larger for the young group.
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(a) Absolute threshold - K = 5
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(b) Proportional threshold - K = 3
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Figure A.11: Posterior means and 95% credible regions of the difference in group-level mean parameters
for each pair of model components under the multi-BERGM (dot and solid line) and under the mean-
BERGM (cross and dashed line) approaches.
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Figure A.12: Local and global efficiency in the observed networks constructed via absolute thresholding
with average node degree K = 5 (bar plots) compared to S = 1000 networks simulated from the
posterior predictive distribution (density plots) for the young group (red) and the old group (blue).
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Figure A.13: Local and global efficiency in the observed networks constructed via proportional thresh-
olding with average node degree K = 3 (bar plots) compared to S = 1000 networks simulated from the
posterior predictive distribution (density plots) for the young group (red) and the old group (blue).
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Figure A.14: Local and global efficiency in the observed networks constructed via proportional thresh-
olding with average node degree K = 5 (bar plots) compared to S = 1000 networks simulated from the
posterior predictive distribution (density plots) for the young group (red) and the old group (blue).
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Correlation between ERGM metrics and network efficiency measures

gwesp gwnsp local efficiency global efficiency

gwesp 1.00
gwnsp 0.95 1.00

local efficiency 0.92 0.89 1.00
global efficiency 0.93 0.98 0.90 1.00

Table A.2: Spearman’s correlation between local efficiency, global efficiency and the ERGM summary
statistics, geometrically-weighted edgewise shared partners (GWESP) and geometrically-weighted
non-edgewise shared partners (GWNSP) for the 200 networks constructed under absolute thresholding
with average node degree K = 3.

gwesp gwnsp global efficiency

gwesp 1.00
gwnsp 0.54 1.00

global efficiency -0.04 0.84 1.00

Table A.3: Spearman’s partial correlation between global efficiency and the ERGM summary statistics,
geometrically-weighted edgewise shared partners (GWESP) and geometrically-weighted non-edgewise
shared partners (GWNSP) for the 200 networks constructed under absolute thresholding with average
node degree K = 3.

gwesp gwnsp local efficiency

gwesp 1.00
gwnsp 0.74 1.00

local efficiency 0.56 0.08 1.00

Table A.4: Spearman’s partial correlation between local efficiency and the ERGM summary statistics,
geometrically-weighted edgewise shared partners (GWESP) and geometrically-weighted non-edgewise
shared partners (GWNSP) for the 200 networks constructed under absolute thresholding with average
node degree K = 3.
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