78 research outputs found

    Simple Model of Capillary Condensation in porous media

    Full text link
    We employ a simple model to describe the phase behavior of 4He and Ar in a hypothetical porous material consisting of a regular array of infinitely long, solid, parallel cylinders. We find that high porosity geometries exhibit two transitions: from vapor to film and from film to capillary condensed liquid. At low porosity, the film is replaced by a ``necking'' configuration, and for a range of intermediate porosity there are three transitions: from vapor to film, from film to necking and from necking to a capillary condensed phase.Comment: 14 pages, 7 figure

    Spatial correlations of vacuum fluctuations and the Casimir-Polder potential

    Full text link
    We calculate the Casimir-Polder intermolecular potential using an effective Hamiltonian recently introduced. We show that the potential can be expressed in terms of the dynamical polarizabilities of the two atoms and the equal-time spatial correlation of the electric field in the vacuum state. This gives support to an interesting physical model recently proposed in the literature, where the potential is obtained from the classical interaction between the instantaneous atomic dipoles induced and correlated by the vacuum fluctuations. Also, the results obtained suggest a more general validity of this intuitive model, for example when external boundaries or thermal fields are present.Comment: 7 page

    Effect of continuous flow HTST treatments on donkey milk nutritional quality

    Get PDF
    Nutritional quality of raw donkey milk (DM) may be impaired during sanitization with the current batch holder pasteurization systems (62.5 degrees C for 30 min). In this paper, we present the preliminary results concerning the effects of high temperature for short time (HTST) protocols using an innovative in continuous low flow rate pasteurization plant (60 dm3/h) on B-vitamins group, antioxidant capacity, lysozyme and beta-lactoglobulin in DM. Lysozyme, beta-lactoglobulin and antioxidant power decreased after the thermal treatments, with characteristics depending on the extent of the heat treatment. The lysozyme content was substantially reduced between 20 and 60%, while the degradation of beta-lactoglobulin was lower (2-22%). No vitamin B1 and B12 were found in raw milk, whereas were detected vitamin B2 (0.17 mu mol/L), nicotinic acid (13.28 mu mol/L), B6 (2.06 mu mol/L) and B9 (0.75 mu mol/L). The heat treatments carried out with the innovative plant ensured vitamin retention, as no significant differences were found against the raw milk (p > 0.05). The preliminary results from this study represent a guidance to the establishment of DM pasteurization standards parameters with the perspective to improve DM nutritional quality

    Quantum states and specific heat of low-density He gas adsorbed within the carbon nanotube interstitial channels: Band structure effects and potential dependence

    Get PDF
    We calculate the energy-band structure of a He atom trapped within the interstitial channel between close-packed nanotubes within a bundle and its influence on the specific heat of the adsorbed gas. A robust prediction of our calculations is that the contribution of the low-density adsorbed gas to the specific heat of the nanotube material shows pronounced nonmonotonic variations with temperature. These variations are shown to be closely related to the band gaps in the adsorbate density of states

    Bose-Einstein Condensation of Helium and Hydrogen inside Bundles of Carbon Nanotubes

    Full text link
    Helium atoms or hydrogen molecules are believed to be strongly bound within the interstitial channels (between three carbon nanotubes) within a bundle of many nanotubes. The effects on adsorption of a nonuniform distribution of tubes are evaluated. The energy of a single particle state is the sum of a discrete transverse energy Et (that depends on the radii of neighboring tubes) and a quasicontinuous energy Ez of relatively free motion parallel to the axis of the tubes. At low temperature, the particles occupy the lowest energy states, the focus of this study. The transverse energy attains a global minimum value (Et=Emin) for radii near Rmin=9.95 Ang. for H2 and 8.48 Ang.for He-4. The density of states N(E) near the lowest energy is found to vary linearly above this threshold value, i.e. N(E) is proportional to (E-Emin). As a result, there occurs a Bose-Einstein condensation of the molecules into the channel with the lowest transverse energy. The transition is characterized approximately as that of a four dimensional gas, neglecting the interactions between the adsorbed particles. The phenomenon is observable, in principle, from a singular heat capacity. The existence of this transition depends on the sample having a relatively broad distribution of radii values that include some near Rmin.Comment: 21 pages, 9 figure

    Isotopic and spin selectivity of H_2 adsorbed in bundles of carbon nanotubes

    Full text link
    Due to its large surface area and strongly attractive potential, a bundle of carbon nanotubes is an ideal substrate material for gas storage. In addition, adsorption in nanotubes can be exploited in order to separate the components of a mixture. In this paper, we investigate the preferential adsorption of D_2 versus H_2(isotope selectivity) and of ortho versus para(spin selectivity) molecules confined in the one-dimensional grooves and interstitial channels of carbon nanotube bundles. We perform selectivity calculations in the low coverage regime, neglecting interactions between adsorbate molecules. We find substantial spin selectivity for a range of temperatures up to 100 K, and even greater isotope selectivity for an extended range of temperatures,up to 300 K. This isotope selectivity is consistent with recent experimental data, which exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed in these bundles.Comment: Paper submitted to Phys.Rev. B; 17 pages, 2 tables, 6 figure

    Quantum Dynamics of a Hydrogen Molecule Confined in a Cylindrical Potential

    Get PDF
    We study the coupled rotation-vibration levels of a hydrogen molecule in a confining potential with cylindrical symmetry. We include the coupling between rotations and translations and show how this interaction is essential to obtain the correct degeneracies of the energy level scheme. We applied our formalism to study the dynamics of H2_{2} molecules inside a "smooth" carbon nanotube as a function of tube radius. The results are obtained both by numerical solution of the (2J+12J+1)-component radial Schrodinger equation and by developing an effective Hamiltonian to describe the splitting of a manifold of states of fixed angular momentum JJ and number of phonons, NN. For nanotube radius smaller than 3.5\approx 3.5 \AA, the confining potential has a parabolic shape and the results can be understood in terms of a simple toy model. For larger radius, the potential has the "Mexican hat" shape and therefore the H2_{2} molecule is off-centered, yielding radial and tangential translational dynamics in addition to rotational dynamics of H2_{2} molecule which we also describe by a simple model. Finally, we make several predictions for the the neutron scattering observation of various transitions between these levels.Comment: 36 pages, 8 figures, submitted to Phys. Rev. B on 12 December 200

    Notulae to the Italian alien vascular flora: 1

    Get PDF
    In this contribution, new data concerning the Italian distribution of alien vascular flora are presented. It includes new records, exclusions, and confirmations for Italy or for Italian administrative regions for taxa in the genera Agave, Arctotheca, Berberis, Bidens, Cardamine, Catalpa, Cordyline, Cotoneaster, Dichondra, Elaeagnus, Eragrostis, Impatiens, Iris, Koelreuteria, Lamiastrum, Lantana, Ligustrum, Limnophila, Lonicera, Lycianthes, Maclura, Mazus, Paspalum, Pelargonium, Phyllanthus, Pyracantha, Ruellia, Sorghum, Symphyotrichum, Triticum, Tulbaghia and Youngia

    Notulae to the Italian native vascular flora: 8

    Get PDF
    In this contribution, new data concerning the distribution of native vascular flora in Italy are presented. It includes new records, confirmations, exclusions, and status changes to the Italian administrative regions for taxa in the genera Ajuga, Chamaemelum, Clematis, Convolvulus, Cytisus, Deschampsia, Eleocharis, Epi- pactis, Euphorbia, Groenlandia, Hedera, Hieracium, Hydrocharis, Jacobaea, Juncus, Klasea, Lagurus, Leersia, Linum, Nerium, Onopordum, Persicaria, Phlomis, Polypogon, Potamogeton, Securigera, Sedum, Soleirolia, Stachys, Umbilicus, Valerianella, and Vinca. Nomenclatural and distribution updates, published elsewhere, and corrigenda are provided as Suppl. material
    corecore