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Quantum Dynamics of a Hydrogen Molecule Confined in a Cylindrical
Potential

Abstract

We study the coupled rotation-vibration levels of a hydrogen molecule in a confining potential with
cylindrical symmetry. We include the coupling between rotations and translations and show how this
interaction is essential to obtain the correct degeneracies of the energy level scheme. We applied our
formalism to study the dynamics of Hy molecules inside a “smooth” carbon nanotube as a function of tube
radius. The results are obtained both by numerical solution of the (2J+1)-component radial Schrédinger
equation and by developing an effective Hamiltonian to describe the splitting of a manifold of states of fixed
angular momentum J and number of phonons N. For nanotube radius smaller than =3.5A, the confining
potential has a parabolic shape and the results can be understood in terms of a simple toy model. For larger
radius, the potential has the “Mexican hat” shape and therefore the Hy molecule is off centered, yielding radial
and tangential translational dynamics in addition to rotational dynamics of Hy molecule which we also
describe by a simple model. Finally, we make several predictions for the the neutron scattering observation of
various transitions between these levels.
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Quantum dynamics of a hydrogen molecule confined in a cylindrical potential

Taner Yildirim
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We study the coupled rotation-vibration levels of a hydrogen molecule in a confining potential with cylin-
drical symmetry. We include the coupling between rotations and translations and show how this interaction is
essential to obtain the correct degeneracies of the energy level scheme. We applied our formalism to study the
dynamics of H molecules inside a “smooth” carbon nanotube as a function of tube radius. The results are
obtained both by numerical solution of theJ2 1)-component radial Schdinger equation and by developing
an effective Hamiltonian to describe the splitting of a manifold of states of fixed angular moméranoh
number of phononsl. For nanotube radius smaller tharB.5 A, the confining potential has a parabolic shape
and the results can be understood in terms of a simple toy model. For larger radius, the potential has the
“Mexican hat” shape and therefore the, ltholecule is off centered, yielding radial and tangential translational
dynamics in addition to rotational dynamics of kholecule which we also describe by a simple model. Finally,
we make several predictions for the the neutron scattering observation of various transitions between these
levels.

DOI: 10.1103/PhysRevB.67.245413 PACS nuni®er78.70.Nx, 34.50.Ez, 82.80.Gk, 71.20.Tx

[. INTRODUCTION and translation states of hydrogen molecules confined in a
one-dimensional potential. This problem is closely related to

The study of quantum dynamics of hydrogen molecules irthe experimental situation where hydrogen molecules are ab-
confined geometries has recently developed into an activeorbed into carbon nanotube ropes. Figure 1 shows schemati-
field both experimentally and theoreticaily? due to poten- ~ cally various types of absorption sites fos Fholecule. Sev-
tial use as catalysts, molecular sieves, and storage media. @al neutron and Raman scattering experiments have been
the case of fullerenes and nanotubes, such trapping masarried out to characterize the binding energies and rotational
yield new exotic quantum systems due to zero and one diparriers for H at these sites with conflicting resufts?*~**
mensionality of the absorption sites, respectively. Thus, unOne of the motivations of the present work is to provide a
derstanding the structural and dynamical aspects of trappin@etailed description of the RV dynamics of iholecules at
in confining geometries is of both fundamental and practicathese different absorption sites and discuss the consequences
importance.

The theory of molecular rotation in solids has a long his-
tory dating back to the early work of Paulifg,
Devonshire* and Cundy?® They introduced the concept of
the crystal field potentiaV/({2), where() specifies the ori-
entation of the molecule, to solve for the energy levels of the
hindered rigid-rotor. This traditional approach assumes that
the center of mas&.m,) of the trapped molecules are fixed
and therefore does not take into account the rotation-
vibration (RV) coupling. However, recent studres have in-
dicated that vibrational levels of Hrapped in the octahedral
sites of G, for example, are significantly perturbed by RV
coupling and in a previous pap&t) we have shown that this
coupling has to be included in a symmetry analysis of the
energy level degeneracies. Interestingly, to date there is a
little done to treat c.m. dynamics and RV coupling. Most of
the studies are based on the approximation where an effec-
tive orientational crystal field potential is obtained after the
potential is averaged over the zero-point translational mo-
tions of the H molecule'*?

Recently (in 1) we have presented a detailed theory of F|G. 1. A schematic representation of a single wall carbon nano-
coupled RV dynamics of 5 molecule trapped in a zero- tube rope indicating three different absorption sites, nanfaly,
dimensional cavity with various symmetries. Here weendohedral(B) interstitial, and(C) external adsorption sites, re-
present a similar study to analyze the combined rotationadpectively.
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for inelastic neutron scattering experiments. In the present ‘ rrerrrETry 20
paper, we focus our attention on the general formalism and 160 . f
discuss only the case where a singlgisl confined inside a {10
single nanotube. Extension of this work to the interstitial and 110
external sites and to cases whergrHolecules interact with ] 0
one another will be presented elsewhere. 60
Briefly this paper is organized as follows. In the next sec-
tion, we discuss the potential model for hydrogen and nano-
tube interactions and validate several approximations, such
as assuming a smooth tube, used in our formalism. In Sec. llI
we present our formalism to treat the coupled rotational and -90 -30
translational motion of Kl molecule confined in a smooth
nanotube. We show that the problem can be mapped into a e 0B 50 0 070 80 o0
(2J+1)-component radial Schdinger equation which can r (A) r (A)
be solved numerically. In Sec. IV we discuss the dynamics of
a hydrogen molecule when the confining potential has para-
bolic shape(which occurs for a small-radius nanotube/e L §
interpret the exact numerical results in terms of a simple ol
analytical toy model. In Sec. V we discuss the case where the
confining potential has a Mexican-hat shape. For this case
[which occurs for large radius nanotubes suckl@s10] the
equilibrium position of the c.m. of the Hmolecule is off-
center and it performs radial and tangential translational os-
cillation in combination with its rotational dynamics. In this
section, we also present several perturbation results which
help to interpret the exact numerical results. In Sec. VI we
discuss the experimental observation of various transitions
via inelastic neutron scattering measurements. Our conclu-
sions are summarized in Sec. VII.
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FIG. 2. Potential energy as a function of distance from tube

II. POTENTIAL MODEL center for a para hydrogene., J=0) interacting with &9,0) (top)

_ ) ) and (10,10 (bottom nanotube. The solid and dashed lines are for
We model the intermolecular potential fo, ttapped ina  smooth and actual carbon nanotubes, respectively. For the actual

carbon nanotube as a sum of atom-atom potentials carbon nanotubes, the value Déxis is taken arbitrarily. The hori-
zontal lines in the bottom panel indicate the radial phonon bound
states in smooth nanotubes. The insets to the left panels are sche-
matic plots of the paraboli¢top) and Mexican hat potentials,
respectively.

V(r,Q):% 2(‘,: [Bexp(—Crij)—A/r}]. (1)
LA,

The dependence of the potential on the positiongnd ori-

entation () of H, molecule is through the interatomic dis- small nanotubes such &8,0), the potential minimum occurs
tances ;. All the results reported in this paper are obtainedat the center of the tube and therefore the potential has a
from the same WS77 potenttl —A/r6+Bexp(—Cr)  parabolic shape. However, for larger nanotubes such as the
(Where A=5.94 eVA® B=678.2 eV, andC=3.67 A"1), (10,10 nanotube, the minimum is off centered and therefore
that we used in ?.Compared to other commonly used poten-the potential has a Mexican-hat shape. Because of this off
tials, the WS77 potential gave the best fit to the energy spe@entering the dynamics of the,Hnolecule is a quite inter-
trum of H, in solid Gs. esting and rich one as we discuss in detail below. The right
For simplicity we will restrict this formulation to the ide- panels in Fig. 2 shows the potential when therhblecule is
alized case when the hydrogen molecule is confined by autside the nanotubes. The outside binding energy does not
so-called “smooth” nanotube. By this we mean that the po-depend on the tube radius strongly and is about 30 meV. The
tential produced by the nanotube has cylindrical symmetnhorizontal lines indicates the radial phonon energy levels,
and is invariant with respect to translations along its axis oindicating that at least a few bound states can occur even for
symmetry. In some of our numerical work we will study a hydrogen molecule outside a single nanotube. The solid
“real” nanotubes which do not possess the high symmetry ofand dashed lines in Fig. 2 show the results with and without
“smooth” nanotubes. the smooth tube approximation, respectively. Since these two
It is instructive to look at various potentials for an orien- curves are very close to one another, the smooth tube ap-
tationally averaged hydrogen moleculiee., parahydrogen proximation will not cause significant error in our theory.
with J=0) when H is inside and outside a single nanotube. In order to develop some intuition about the orientational
Figure 2 indicates two different types of confining potential potential for a hydrogen molecule in a nanotube, in Fig) 3
depending on the nanotube radius. Figure 2 shows that fawe show the radial potential for three different orientations

245413-2
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rotational quantum numbdrs. Accordingly, for tubes whose
radius is less than that of (@,0) tube,J may not be consid-
ered to be a good quantum number. For large nanotubes,
such ag10,10, the orientational potential is of the order of

8 meV and does not change much with larger radius tubes
(i.e., close to the graphite limitin the present paper, we
present our formalism using®,0) and (10,10 nanotubes
which represent the two potential regimes; namely the para-
bolic and Mexican-hat potentials, but for both tuldds con-
sidered to be a good quantum number.

Energy (meV)

~— I1l. FORMULATION

0 1 2 3 4 The hydrogen molecule is unique in that its moment of
distance from fube center (A) inertia is small enough that the rotational kinetic energy of-
ten dominates the orientational potential in which the mol-
ecule is placed. Under these circumstances the rotational
quantum numbeid is nearly a good quantum number and the
effect of the orientational potential is to reduce the degen-
eracy of the 3+ 1 substates of a giveh (The generaliza-
tion of the formulation we present below to the case when
is not a good quantum number will be presented
-100 (11,0 ' elsewherg!’ In the present case any eigenfunction describ-
ing the orientational and translation state of the molecule can
P be written in the form

(b) ‘ S

(20,20) &

Energy (meV)
o
°
°
us]

J
‘ V() =y(r¢ Q)= 3 T ¢V (Q)e',

5 7 9 11 13 15 — , )
Tube radius (A) wherer, z, and ¢, are the cylindrical coordinates of the

FIG. 3. (a) Potential energy as a hydrogen molecule is translatecfenter'Of'_maSS_ of the h)/,dmge” moleculedenotes :\ES mo-
from the center of 410,10 nanotube when His oriented to be ecular orientation specified by anglésand ¢, andY; ()

parallel to the tube axisp), radially (r), and tangentially t), is a spherical harmonic. We will refer t(r, ¢, ;(2) as the

respectively. Inset shows these configurations. The equilibrium discylindrical RV wave function. For economy of notation we

tance and minimum potential depends strongly on the orientation ofenceforth omit the superscriptsand k. Because®), is

the H, molecule, indicating strong rational-translational coupling. allowed to depend arbitrarily onand ¢, , this wave func-

(b) The minimum potential energies, , E,, andE,, for radial,  tion takes into account the most general interaction between

parallel, and tangential orientation of rholecule for various nano-  rotations and translations subject to the constraint Jhata

tubes. good quantum number. In this notation, the Hamiltonian for
a single hydrogen moleculef massm) with J andk fixed is

of H, molecule inside 410,10 nanotube. We note that the Written as

radius of the(10,10 tube is large enough that the parallel to h2 )

the axis(p) and tangentialt) orientationgas depicted in the H=~— ﬁv +BJ(J+1)+V(r,Q), (©)
inset to Fig. 8a)] give almost the same energy. However, theWherem is the mass of an Hmolecule andv(r,Q) is the

radial (r) orientation of a H molecule has a minimum en- orientational potential which, as indicated, also depends on
ergy which is about 8 meV higher in energy than that of the P ’ ' b

other two orientations. We also point out that the position OPOSIIIOH. For_ a smooth nanotube we may write the orienta-
o : tional potential energy as

the c.m. of the H molecule for the minimum potential en-

ergy changes about 0.2 A depending on the orientation of the

-150
3

H, molecule. This is a clear indication that the orientational V(r,Q)=Vo(r)+ > V(r,)YM(6,9), (4)
and vibrational motion of hydrogen molecule are signifi- LM
cantly coupled. where the sum is over>0. Hered is the angle between the

Figure 3b) shows the minimum potential energies H, molecular axis and the axis of the tube. Although the
E,, E,, andE, for respective radial, parallel, and tangential transverse direction forp=0 is arbitrary, it does have to
orientations of an kimolecule inside various nanotubes. It is coincide with that for¢,=0. Because the hydrogen mol-
clear that for nanotube radius around 3 A, the orientationaécule is centrosymmetric, only terms witheven appear in
dependence of the potential is of the order of 30 meV andhe potential. Also, because a smooth nanotube has a mirror
therefore is comparable to the energy separation of 80 melane perpendicular to the axis of symmetry, only terms with
or more between energy levels corresponding to differengévenM appear. Furthermore, because a global rotation of the

245413-3
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molecule (i.e., incrementing bothp and ¢, by the same 202 19 1 , "
amoun} is a symmetry of the system, we may write - ﬁ(a_rﬁ T3 2(PTM) )+V0(r) fa’p(r)
. M/’ (a)
V(r,Q)=Vo(r)+ > oM(r)YM(6,0eM@=¢)  (5) +LEM, vr (NDfyZmrp(r)
LM ,

x| | doy)ryM @) vy o dQ)
wherev} is a function only ofr andv_ M=0vM*. In addi- (J FETYE (@Y (D)

tion, UEA(VZO) vanishes forM #0. There is also a mirror —EF@ (1) (10)
plane containing the long axis of the tube which implies that M,PR=

the potential should be an even function @< ¢,). This  For eachP index we have a Schdinger equation for the
implies thatv"(r) is a real-valued function. This function (2J+1)-component wave function which is of the form
may be evaluated by integrating the potential at a fixed f*) p(r),f), 1p(r), . .. f§%(r)]. Then the cylindrical RV

center-of-mass position over all orientations wave function is
| P e Q)= P4 HP () Y (Q)e ™M
u[‘(r)=e'M¢rfdQY[”(a,¢)*V(r,Q). (6) M
=e PA (Y (9)eM@ 4,
Contrary to appearance"ﬁ"(r) does not depend og, be- M
causeV(r,Q) is a function of @— ¢,). (12)

The Schrdi tion f v Q) . N .
e Schrdinger equation foy(r, ¢:() s It is important to keep in mind thax'ﬁ"(r) vanishes for odd

M. As a consequence, in theJ2 1)-component wave func-

R2 (> 19 1 &2 tion there is no mixing between even and odd valueMof
- ﬁ(WJF v ar T2 ggz) TVl For J=1 wave functions one will have “even” wave func-
' tions in which the sum oveM in Eqg. (11) reduces to the
M —iM g M (@) _ single term forM=0 and “odd” wave functions in which
+% v (ne oY) |0 (r, Q) the sum oveM in Eq. (11) includes onlyM = +1.
The quantum numbeP indicates that this wave function
=E@yl(r,¢,:Q), (7)  transforms ag~'P¢ when the position and orientation of the

molecule are simultaneously rotated about the axis of sym-
. metry. Under this global rotation the quantity

where E(=E(®)—-BJ(J+1)—#%%k?/(2m). For given val-
ues ofJ andk, this equation generates a spectrum of eigen- f(,\,ﬁ”)P(r)e*iM‘ﬁrYg"(Q) (12
vectorsy{?(r, ¢, ; Q) with associated eigenvalués®, for
a=0,1, ... .Substituting Eq(2) into the Schrdinger equa-
tion we rewrite it in the form

is invariant, so the total wave function transforms as stated.
Whenuv'(r) is independent of, then, since (r =0) must
vanish, we have that'(r)=0 for M#0 and, in Eq(10)
there is no coupling betwee‘rﬁ,?)’s for different values oM.
Thus, in this case there is no dynamical interaction between
+V0(r)}cl>fv|“)(r,¢r) the orientational coordinate and the center-of-mass coordi-
nate and the wave function can be chosen softjjatis only
PPN MM’ nonzero for a single value df. Then one has the usual
J dQY7 Q)" Y7 ()Y, (Q)dQ separation of variables so that the orientational wave func-
tion is proportional tce”‘" ¢ and the translation wave function
oM (0D (r,d)e ™ ¢ is proportional tee™'™* "¢, Here we have accomplished a
similar separation of coordinates wheﬁ'(r) is allowed to
—E@DO(r,¢,), M=—J,—J+1.--J-1J. (8 depend orr. Now the result is not a scalar radial equation,
but rather a radial equation for a J2 1)-component wave
) . . . function. That is the result embodied in E40), where we
We see that we may write a solution to this set of equation$, ;e one such (+ 1)-component radial Schdinger equa-
in the form tion for each value oP.

K202 149 1 92
2m ey

Tt -t
2 2 2
arc rar re ey

+ 2

LM’

DL(r, ) =F(D(r)e I(PTMIér 9) IV. QUASIHARMONIC POTENTIAL

In this section we discuss the case exemplified by,a H
where P is a quantum number whose significance we willmolecule inside a (9,0) nanotube, for which the minimum of
discuss shortly. Thus we have the potentialVy(r) occurs forr=0, in which case we will
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introduce a toy model with the isotropic harmonic potential 2. Anharmonic potential
—1p 2 _ . .
Vo(r)=zkr*. The U2 symmetry is broken by anharmonic terms which
_ _ _ _ then take us into the generic case of a particle in a circularly
A. No interactions between rotations and translations symmetric potential which is not harmonic. Accordingly, we

now consider the effect of adding an anharmonic perturba-
) ) ) ) tion of the form+yr# to the harmonic potential. For illustra-
Here we discuss the eigenvalues and eigenfunctions of th@/e purposes, we treat this anharmonic perturbation within
two-dimensional isotropic harmonic oscillator, to emphasizerst-order perturbation theory. Our results are characteristic
drical coordinates and that in terms of Cartesian coordinatesg distinct eigenvalues. In this case, thdold degenerate

For an isotropic and harmonic potential we expect the eigenmanifold which has energg% » for the harmonic potential

1. Harmonic potential

values to be is split into doublets(corresponding to the degeneracy be-
tween+m and —m) and, ifn is odd, a singlet froorm=0.
En=(n+1ho=(n+1)Vk/m. (13 Our explicit results are given in Table I. These results are

Note that thenth level (with energynfiw) is n-fold degen- generic in the sense that addition of further anharmonic

erate, because in Cartesian notation, if, say4, we have terms will not further change the degeneracies.

wave functions (3,0), (2,1), (1,2), and (0,3), wheren)) _ _ _

is a wave function wittn excitations in thex coordinate and B. Toy model of translation-rotation coupling

m excitations in they coordinate. This degeneracy reflects | this section we explore the consequences of allowing

the U, symmetry corresponding to the invariance of thecoupling between rotations and translations. Since we now

Hamiltonian with respect to a transformation of the form  restrict attention to the manifold ofJ& 1), we need keep
,r, t only terms withL=2 in Eq.(5). Thus, as a toy model, we set

(ay) (a)

@ | =} @ | (14 V(r,Q)z%krz—ga(3co§9—l)

wherea! and a§ create phonons in the andy coordinates, 5

respectively, and is a two-dimensional unitary matrix. This - EBFZSinzﬁ cog2¢—2¢;), (18
transformation is essentially the same as a four-dimensional

rotational symmetry in the space of the momepfa p,,  wherea, B, andk are constants and the facter3 is in-
and coordinatex andy. Since the kinetic energy is quadratic cluded so that the matrix elements are numerically simple.
in the momenta, spherical symmetry in this space only hold#\lso we take the dependence oto be quadratic to facilitate

if the potential is harmonic. calculation of the matrix elements. In the language of Gy.
In cylindrical coordinates the eigenfunctions can be writ-this  model has v3(r)=—ay20r and v;%(r)
ten as =—pr2\/107/3. We are going to consider the effect of this
_ Hamiltonian within the manifold of J=1) states. Using this
z,/;fi(r)e'“‘/’, (15 toy model we can illustrate how the rotation-translation af-

fects the symmetry of the energy levels. Within thie=1)

where /% (r) satisfies the radial equation . ) .
Yul(r) q manifold we may use operator equivalents to write

A2 [d2y(r) 1dyg(r) w?] 1
_ a1 _ = T2, 1
om| arZ Ty Tdr - r2] T2k L) V()= Skr2+ a(332-2)+ AL~ 3) (0P~ y?)
=Eg ¢ (r). (16) +2(3,Jy+3,3,0xy]
Here the family of solutions for a given value pf are la- 1 1
beleda=0,1,2 ..., in order of increasing energy and for = §er+ a(332-2)+ Eﬁ(JiJrJz,)(xz—yz)

the isotropic and harmonic potential we have
—iB(J%—J3?%)xy. (19)

For illustrative purposes we will assume thatind B are

So from the radial equation foqe=0 we have eigenvalues small compared to the phonon enerfjw. Here 02=<x2>

hw, 3w, Sho, etc. The fact that we have a seemingly =(y?), where the averages are taken in the ground state. In
accidental degeneracy between different representaiiens  that case, in addition to the quantum numiBerthe total
between different values qf) is the result of theJ, sym-  number of phonon#l is a good quantum number. However,
metry of the Hamiltonian mentioned above. A consequencgve emphasize that in our numerical wdflwe do not make

of this symmetry is that for a harmonic potential the totalthis approximation. Equatiofl0) assumes thal is a good
energy depends only on the total number of phonon excitaguantum number but mixes states with different numbers of
tions. This symmetry is distinct from the circular symmetry phonon excitations. We should mention that the toy model
in x-y space. assumes that the molecule has minimal potential energy

E,=(ut+1l+2a)fio. a7

245413-5
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TABLE |. Two-dimensional harmonic oscillator wave functions.

El(hiw)  (dE/dy),—o  m? o P(x,y)P
1 804 0 0,0 1
2 240" 1 (1i) X+iy
2 2404 -1 (1-1) x—iy
3 560* 0 [ (2,0 + (0,2] (r¥le?) -2
3 485" 2 [(2,0)—(0,2)+i2(1,1)] (x+iy)? o?
3 480* -2 [(2,0)—(0,2)—i2(1,1)] (x—iy)?o?
4 960 1 [V3(3,0)+(1,2)] [(x+iy)/a][(r?0?) —4]
4 9604 -1 [/3(0,3)+(2,1)] [(x—iy)/ o[ (r? o?) —4]
4 80s* 3 [(3,0)—3(1,2)]+i3(2,1)~i(0,3) [(x+iy)/a]?
4 80s* -3 [(0,3)-3(2,1)]-i3(2,1)+i(0,3) [(x—iy)/a]®

3n cylindrical coordinates the)-dependence is through the facef?.
bThe wave function contains, in addition to the factors listed[ eXg?+y?)/(40?)] as well as a normalization
factor.

when it on the axis of the tube. For smfdl.g.,(9,0) tubeg E(ny,ny,J,)=2hw+ a(332-2), (22)

this assumption is justified. For larger tubes, the minimal

potential energy occurs for a nonzero valueroénd the

molecule is dominantly off center. We will later treat that SO that the lowest energy stdte «>0) is doubly degenerate

case using a different model. and the excited state is fourfold degenerate, as is shown in
Fig. 4.

C. Results of the toy model

We now discuss the results of the toy model assuming that 3. One-phonon manifold with rotation-translation coupling

the number of phonons is a good quantum number. We note The unphysical aspect of the energy level scheme we just
that all the energy expressions given below are with respedound for the one-phonon manifold is that it does not take

to BJ(J+1) with J=1. into account that the molecular orientation ought to be cor-
related with the translational motion. If the molecule trans-
1. Zero phonon manifold lates near the wall, then the molecule should preferentially

We frst consider he manfol of the states havbg1 12 PR1IE) 0 e Al Tie mears hl e oventeten of e
with zero phonons. One finds that the energy is diagonal ic\'his effect will be h v th I B
I, with _ greater the more strongly the wall poten
z tial affects the motion of the molecule.

In terms of number operatons, and n, which are the
number of phonon excitations in theandy directions, re-
so that(if « is positive one has the singlet,= 0 state lower ~SPectively, anda, anda] which are creation operators for
than the doubleg,=*=1 states by an energy separation of
3a. One may visualize this as the energy difference between TABLE Il. Wave functions for rotation-vibration fod=1,n,
a state for which the molecule is in the phonon ground state-n,=0.
and is oriented parallel to the axis and the two states when

E(J,)=a(3)2-2), (20)

the molecule is in the phonon ground state and is oriented Energy pP Wave function
transversely to the axis. For later use we tabulate these wave ny=0,n,=0
functions in Table II. J,=+1 J,=0 J,=-1
2. One-phonon manifold without rotation-translation coupling —2a 2 2 é 8
o
If we set3=0 in the toy model of Eq(19), then essen- o 1 0 0 1

tially we have independent oscillation of molecules which
have fixed orientation. Then if, andn, are the vibrational e tabulate the energy relative faw.

quantum numbers, we see that in the one-phonon manifoltP defines the transformation of the wave function under a global
(ny+ny=1) we have rotation, as explained in connection with Ed1).
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FIG. 4. Removal of the degeneracy in the energy level scheme
of the one-phononJ= 1) manifold according to the Hamiltonian of
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els. Quantum mechanically the situation is different. In Fig. 4
we show the energy levels when no dynamical mixing be-
tween rotations and translations is allowed, i.e.,#6¢0. In

this limit the six states form a degenerate doublet and a de-
generate quartet. When translation-rotation mixing is al-
lowed, i.e., forB#0, we now have the generic case of two
doublets and two singlets, as shown in Fig. 4. The wave
functions are shown in Fig. gt is interesting to note that

it is not obvious that the wave functions fét=+2 and
P=—2 are related by symmetjpy.

4. Two-Phonon manifold with rotation-translation coupling
Actually, because the dependenceroof the matrix ele-

Eg. (22). The diagram labeled “sphere” is for a spherical molecule ments in Eq(19) was taken to be either constant or propor-
for which = =0. That labeled “rod” is for decoupled rotations tional tor?, the representation of E(22) is valid within any

and translations of a rodlike molecule for whiah# 0, but 3=0.
That labeled “rot-vib” is for translation-rotation coupling wit
#0.

manifold of fixed total number of phonons and=1). The
removal of the degeneracy in the energy level scheme of the
two-phonon(i.e., ny+ny,=2) and J=1) manifold accord-

ing to the Hamiltonian of Eq(22) is shown in Fig. 6. The
eigenfunctions and eigenvalues for this manifold including

these excitations, we may write the Hamiltonian for the one-anharmonicity are listed in Table V.

phonon J=1) manifold as

H=thw(n+n,+1)+a(332-2)+0?B[(I% +I%)(nc—ny)

—i(J5-J%)(afa,+ala,)]. (22)

The results obtained by numerically solving the eigen-
value problem of Eq.(10) using the WS77 potential are
given in the last column of Table ¥. To understand the
meaning of this spectrum, we relate these results to those of
the toy model when the parameters of the toy model are
suitably chosen. For a good fit we allow the constantsnd

This gives the energy level scheme shown in the rightmosB to depend on the total number of phondnwgThis depen-
panel of Fig. 4. The wave functions are given in Table Ill anddence reflects the fact that the dependence of the parameters
we discuss them now. First of all, in a classical picture, weof the toy model orr is arbitrary and unrealistic.In this
would argue that the molecule can oscillate equivalently irsimple model we also include the anharmonic tegmf

each of the two coordinate directions transverse to the cylinwhich we treat within first order perturbation theory. We de-
der. In each of these two cases the molecule can assume thiteemine the best parameters for the toy model by making a

inequivalent orientations because the directi@slong the

least squares fit of the numerically determined energy levels

axis of the tube(b) parallel to the directions of spatial oscil- to those of the toy model and these parameters as well as the
lation, and(c) transverse to the direction of spatial oscillation results of this fit are given in Table. V. The fact thaf

are all inequivalent to one another. This argument predictslepends oM indicates that we should probably replac®y

that the six states form three doubly degenerate energy lewer?. Also the fact that the splitting of the two phonon mani-

TABLE lIl. Wave functions for rotation-vibration fod=1, ny+n,=1.

Energy pP Wave function
Ny 1,ny—0 nX:O,nyzl
J,="+1 J,=0 J,=-1 J,="+1 J,=0 J,=-1
a+40?B 0 1 0 : -3 0 1
a—40°B 0 3 0 -3 —3i 0 —3i
—2a 1 0 1 0 0 L. 0
V2 V2
—2a -1 0 1 0 0 _1, 0
V2 V2
@ 2 1 0 0 L, 0 0
V2 2
a -2 0 0 1 0 0 _1,
V2 V2

Ve tabulate the energy relative td .

P defines the transformation of the wave function under a global rotation, as explained in connection with

Eq. (11).
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SPHERE ROD AE ROT-VIB AE
A2) - 0+12y0%4+4R
P=12 @@ @@ ,.-""..,.(2)_ o+12y04—4R
% £ (2) mmm 0+8YG4
. (1) m——m—200+16y04

KY+yX [ KX-yY nx+ny=2 *, ¢
XY +yX> xX-yY> AR . ,:-:',..*(2)——20L+8YG4
X

‘.'(3)——2()(

FIG. 6. Removal of the degeneracy in the energy level scheme

of the two-phonon J=1) manifold according to the Hamiltonian
of Eg. (22). The diagram labeled “sphere” is for a spherical mol-
ecule for whicha=pB=0. That labeled “rod” is for decoupled
rotations and translations, but withw 0. That labeled “rot-vib” is
for anharmonic and translation-rotation coupling wigk- 0. Here
R= \/y208+ 2,820' .

lyZ>

&

o~}
I

H

—_

hz> 5. Summary

We can summarize the systematics of the rotation-
translation spectrum of the toy model we have introduced.
We first consider the harmonig=0 case and then discuss
the effect of introducing anharmonicity. In thephonon sec-
tor the harmonic phonon wave functions give rise to states
proportional to &+iy)N. Combining these with al,=1
state gives a unique=N+ 1 state. This state will be degen-
erate with the similarP=—N-—1 state. In the toy model
xY-yX> xX+yY> these states have energM{ 1)Aw+ «. Adding anharmo-
nicity shifts the energy of these two states, but their degen-

&

OneFIG. 5. Translatlon-rotgtlon wave func_tlt_)ns for a=1) ywth qeracy is generic.
phonon when there is dynamical mixing of translations an . .

rotations. Here the plane of the paper is thg plane and each _HaNr[nzclznlc? phonon State_s W_h'Ch transform - asc (
figure eight represents diX) or |Y) orientational wave function 1Y) will uniquely combine withJ,=0 states to form
and the sign associated with each lobe of thitke function is  States for whichP=(N—2k) and which have energyN
indicated. For théZ) orientational functiofwhich would have the +1)fiw—2a. In analogy with Fig. 4, anharmonicity splits
figure eight coming out of the pagee indicate the sign of the lobe

in front of the page. Each orientational wave function is multiplied  tag £ v Wave functions ford=1n,+n,=2 with anhar-
by a translatllonal wave functiofx) or |y), Wherg, for |nstan(?e, monic (scaled withy) and rotation-translation couplin¢scaled
|x)~x exd — 7(x/o)?]. The presence of a phonon in thg coordi- with B).

nate thus causes the wave function to be an odd functiory phs

one sees in the diagrams. One sees thaPth® wave functions are p Wave functiof Energy
invariant under rotation byr/2. (In fact, they are angular invari-

ants) From the states labeled with nonzero valuesPpfone can 0 |m=0;M=0) —2a+ 167/0"'
form the complex linear combinations which transform 3? 1 [[m=2;M=—-1)+|m=0;M=1)]/y2 a+12yc*+4R

when the position and orientation of the molecule are simulta- — 1 [|m=—-2;M=1)+|m=0;M=—-1)]/\2 a+12yc*+4R
neously rotated about the symmetry axis. Although it is far from 4 [[m=2:M=—1)—|m=0:M=1)]/\2 a+12ys*—4R
obvious, the two states label&=2 are degenerate in energy. The [m=—2;M=1)— |m=0;M=—1)J/\2 a+12ys*—4R
two P=0 states have different energy, in general. So quantum me- ' '

o\ — _ 4
chanics predicts the six state manifold to consist of two doublets \m—2,M—0> 2“+87U4
(one for P==1 and one forP=+2) and two singletsfor P [m=-2;M=0) —2a+8ys
=0). 3 Im=2;M=1) a+8ys?

-3 Im=-2;M=-1) a+8yot

fold is not perfectly reproduced by the toy model indicates
that the anharmonicity energy is not simply proportional to®Here M indicates a wave function for whicd,=M. The states
r. Nevertheless the close agreement between our numericandicated bym are the phonon states in the cylindrical gauge and
results and those of the toy model indicates that this modekre listed in Table .

provides a useful simple picture of translation-rotation cou-"Here R=\/y?¢®+28%¢". Also these are energies relative t& 2
pling. +3hw+ 40y’
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TABLE V. Energy levels in meV for the toy model for aJ( 60 ‘ - -
=1) hydrogen molecule inside of(8,0) tube, compared to numeri- (a) ’ ’
cal calculations based on E¢L0): The parameter¢in meV) are
@o=2.82. @;=3.56, a,=4.32, B;0°=0.59, B,0?=0.55, yo*
=0.29, andhw=27.36. =

(0]
i €
P Toy Model Energ§" Energy (Numerig <
o
0 0 0 f=
*1 3a(=8.46 8.46
0 200+ a1 +4B,0°+ hw=738.92 39.01
0 200+ ay— 4102+ hw=34.20 34.29
+1 20— 2a,+hw=25.88 25.89
+2 2ap+ a;+hw=36.56 36.56
-5
2a9—2a,+ 46+ 2hw="56.36 55.67 (b)
+1 2a0+ ay+36+4R+2hw=71.68 71.13 _15 s
*1  2ag+a,+35—4R+2hw=64.64 64.12 (
*2  2ap—2a,+8yc’+2hw="54.04 53.53 =~
+3  2ap+ ap+8yot+ 2hw=67.00 66.35 g = .
> = 7
@The zero of energy is taken to be the lowBst 0 level. g) _a5 . ES))
bHere R= 4208+ 225" u *E
E,=-50.02 meV
-45 5=1.89 meV
these states into doublets 6fP and—P and, ifP is even, a ) g\=$-gj meV
. =1. mev
singlet forP=0. _55 ‘

The rotation-translation couplingproportional to3) in- 0 5 10 15 20

fluences the states witR=N—1, P=N-3, etc. For posi- P

tive P one has two eigenstates made from linear combina-

tions of states of the formﬁ.lz(x*"Y)PHL_]z: -1) a“‘_j and (J=1) (b) inside a (10,10) nanotube versus quantum number
$o=(x+iy)P"*J,=+1). Since the rotation translation p The symbols and the dotted lines are obtained from numerics and
coupling interaction proportional tey(J% —J?) has matrix  the solid lines are fit based on the simple models as discussed in the
elements between these two states, the eigensigtesp, text, indicating that a few of the lowest energy levels can be under-
will be split by an amount proportional {80 and this split-  stood from these simple models. For the caseJof {) hydrogen

ting will be modified by anharmonicity. Obviously, this sce- (bottom), for eachP we have now three energies, which are split by
nario indicates that one can not understand the degeneraciggout 3 meMcomparable to 2.6 meV observed fog bin graphite.

of the states of a hydrogen molecule in confined geometryVe note that for bothJ=0) and =1) cases, onlN=0,1, and 2

without considering the effect of rotation-translation cou-phonon levels can be safely identified. The inset to the lower panel
pling. gives the fitted values of the parameters of E2B). In the lower
panel, the energy is with respectBa(J+1).

FIG. 7. The energy levels of of an,Hnolecule with §=0) (a)

V. MEXICAN HAT POTENTIAL h? 9> h7p? 2| ¢(a) (@)¢(@)
—ﬁ&—rz‘i‘W‘FEo‘l‘Ek(r—ro) fp (r):EP fp (r)

Here we discuss the case when the minimum of the po
tential Vo(r) occurs for nonzera as happens for FHmol-
ecules inside 1810 tubes or for H molecule in a bound - ) ) )
state outside any tube. We start from E#0). To see what In writing this result we dropped the term linear in the de-
this equation yields, we first consider its solutions forJa ( fivative. This term does not contribute to the energy in first-
=0) molecule. We have solved the eigenvalue problem ofrder perturbation theory. When we treat the ternPinper-
Eq. (10) numerically on a mesh of points for a £@0 tubetd turbatively, _th|s equation leads to a harmonic oscillator
The results shown in Fig.(@ indicate two different regimes SPectrum with
for the dependence of the energy levels on the quantum num-

(23

berP. For the low-lying energy states it is quadratic and then 1 72p2/ 1
gradually becomes linear as the energy of the states increase. E(F,N)z E0+( N+ > ho+ 2—< —2> , (29
It is possible to understand the quadratic behavior of en- mAr

ergy levels versus the quantum numiBebased on a simple
idealized model. Assumingf,(r) can be replaced by a har- wherew=Jk/m and({X) here indicates an averageXbver
monic oscillator potential, Eq10) becomes essentially the radial wave function.

245413-9
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The gray solid lines in Fig. 7a shows the results based ofiTo a good approximation these averages can be calculated
this model and the points are from the numerical exact refrom the J=0) wave function] In what follows we set

sults, indicating that our idealized model successfully de-
scribes the low-lying energy spectrum. Heére is of order

14 meV and and the quantum of tangential kinetic energy
(h2/(2mr?)) is about 0.1 meV. Curiously, this spectrum is
reminiscent of the vibration-rotation spectrum of a diatomic
molecule!® Finally as we go away from the ground state, the
simple model is not enough to explain the observed behavior.
We note that the spacing between the energy levels is not

(v¥(r)=wy (26)

for M=0 andM =2. Then, if we set =ry+Xx, Eq.(10) may
be approximated as

B2 2 hAHP+M)? A
— T 4 E +—k(x—r1g)?| (D (x
2m 9x> 2mr3 "o ( o) | Tp(%)

constant(probably due to an anharmonic contribution to the
potentia) and the dependence on tRebecomes almost lin-
ear.

We next discuss the solution of Eq10) for a (J
=1) H, molecule. Figure {b) shows the results obtained
numerically'® We will interprate numerical results using a

V2

:ng(l\lla,)P(X),

> C(121M =M, M w42 (0
MI

(27)

simple model which includes the translation-rotation cou-where the Clebsch-Gordan coefficients assume the values

pling (as embodied by the"’s). We expect the radial wave
functions to be Gaussians centered abosty. Indeed in
the terms containing'ﬁ"(r), we will make the replacement

ol (N —(ot(r). (25)
|
1 5+A(P—1)? 0
H(N,P)=[Eq+ Nfi 0] T+ 0 — 5 0+AP?
B 0

where 7 is the unit matrix, A=(#%/(2mrd)), &
=—3Wq /207, andB=—w,+/3/107. For fixed values of
N andP we have the three energy eigenvalues

2
EO=Eq+Nhw— §5+AP2,
1
E®)=Eq+Nhw+ = 6+A(P2+1) = J4A?P2+ B2,

3
(29)

In Fig. 7(b) we show the spectrum of @€ 1) molecule
obtained numerically from Eq10) as a function ofP. Our
numerical results indicate the phonon numbéris a good
guantum number and can so be identified only fbx 3.
Accordingly, we limit our detailed interpretation in terms of
the model of Eq(28) to N=0. For each value d? there are

C(121,L,0)=(3L?-2)//10 andC(121;—1,2)=\/3/5. For
each value oN (the number of radial phonohandP (the
number of tangential excitationthe Hamiltonian is the fol-
lowing three-dimensional matrifvhere the rows correspond
toJ,=—1, J,=0, andJ,=+1, in that order.

B

0 , 29

$0+A(P+1)?

also the result of the simple model of E&8). The values of

A, B, andé used to get a good fit are given in the figure. The
value ofA (0.092 meV is not very different from the value
#2/(2mr3)=0.087 one gets from the value aof=r,
=3.46 A at the minimum of the potential. Thus the numeri-
cal results are easily understood in terms of our simple toy
model.

VI. EXPERIMENTAL OBSERVATION
OF THE ENERGY SPECTRUM

Here we make some remarks concerning the observation
of these modes via inelastic neutron scattering. Specifically
we consider the energy loss spectrum in the neutron time-of-
flight spectrum(This technique has been used to probe local
excitation of H, molecules in the octahedral sites ofyCY)

We start be recalling the results for the cross section for

three energy eigenvalues, two of which are close in energynelastic neutron scattering of,Hnolecules. When the very

These corresponds to the case where thenidlecule is ori-
ented parallel to the tube surfa@ee.,t andp orientations in

small coherenfi.e., nuclear spin independgrgcattering is
neglected, the result is

Fig. 3. The third energy corresponds to the orientation per-

pendicular to the tube surfacee.,r radial orientation shown

in Fig. 3). This orientation has an energy about 3 meV near
than that of the other two orientations, and is comparable to

2.6 meV observed for Hon graphite"? Figure 7b) shows

Pa K
m: ?[NXSJ_HJ_'F NXS]_HO‘F N(l—X)SOﬂ]_],

(30)
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wherek (k") is the wave vector of the incideriscattered 1 . /1 1
neutron,N is the total number of imolecules in the target, 005( EK'P) :Jo(z ) 477]2( KP)E Y5(1)Y5(p)*
x is the fraction of H molecules which have odél(i.e., are
ortho molecules and the subscripts indicate the partial cross 1 . 1 R ~
sections due to ortho molecules, to ortho-para conversion, Sin(imp) 247Tj1(§KP)Z Yi()*Yi(p), (32
and to para-ortho conversion, respectively. When the sum #
over nuclear spin states is performed, these partial cross sewhere j,, is a spherical Bessel function. We will assume
tions are given by that « is small enough that the term j3 can be neglected.
Since it is not trivial to obtain a meaningful result which
properly contains the Debye-Waller factor, we proceed sim-
3 ply, as follows. From the numerical solution on a mesh of
2 h2 ) = points we obtain the family of wave functiorigach one
So-1,=3 (") 3,=03;=1 Pio(E-E+Ey) denoted|J,P;a)), for which J and P are good quantum
5 numbers andr=1,2,3 ... . (In limiting cases one may re-
place the single index by two indicesN and y, whereN,
the number of phonons, is nearly a good quantum number.
If we label the radial mesh points ky=1,2,3 ..., then we
have

. (1 )
X (f|e""RiS|n(§K~p)||)

1 J P+ ) by
«S’bo,,:Z(b’)zk1J P,8(E—E;+Ey) 3 P_a>_E,HJEkc (ke T PHmEr 1 )]3,9,= )
C [27 =) Syfcl Rk, m) ?ri M2

=0
" R,Sm( % ) (33

Here|r,) (and later(r,|) is a Wave function of unit ampli-
tude at the positiom, . Also thecJ F,(k wm)’s are the set of
coefficients(for fixed J, P, anda) which are obtained by the

1 numerical solution of the (2+ 1)-component radial eigen-
Sbl,j=§(b’)z P,S(E—E;+Ey) value problem on a set of mesh poifitg}. This discretized
Ji=1di=1 eigenvalue problem involves diagonalization of nonsymmet-
_ 1 2 ric matrix. (The radial equation gives rise to a Hermitian
I Ricos( —K~p) I, (31 problem only if proper account is taken of the radial weight
2 function) The numerical program takes no account of any
weight factor, but rather normalizes these wave functions by
, ) requiring that the sum of the squares of their coefficients be
where k=k’—k, R; is the center of mass of thigh H,  ypjty. Since we always wish to define inner products with a
molecule, andp is the vector displacement of one proton weight factorr,, we will explicitly include a factor, when
relative to the other proton in the,Hinolecule. Herd' is the  we take inner products. ThenXis a quantity which is local
incoherent cross section of the proton dhds the canonical in r and ¢, but may be off diagonal i) and/orJ,, we
probability of state. To deal with molecular orientations for express its matrix element between such numerically ob-
molecules wherd is at most unity, we write tained wave functions as

27 p! r_
A S (3 3,= 1! X, 31)|3,3,= whrieSn, (ko) * §A(k, ) € (P P o’ =
<J’,P’;,8|X|J,P;a>E

27 Syl SSBk ) PP |C pr(k',M )|2r 12
(34

Hereu' assumes integer values betweed’ and+J’ and A. Para to ortho conversion

w integer values betweenJ and +J. For neutron energy loss due to para to ortho conversion,
To evaluate the cross sections, the major problem is tQye need the matrix element of

evaluate the matrix element, which we may &4(IX|i). We

will not discuss all possible transitiorigshich are shown in

Fig. 4 of I). Instead we will focus on the neutron energy loss

spectrum due tda) para to ortho conversion db) radial

phonon creation on an ortho molecule. and for simplicity we consider the case whens perpen-

X= 4’7TJ1

1 -
Kp)exmx R)2 Yi(0Yi(p)*  (39)
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dicular to the cylindrical axis of the nanotube. Then we mayE;) will be the ground state fa¥=0 and for a small value of
as well placex along the locak axis. Also the center of mass P (which we denoteP;). Thus
of moleculej is atr, relative to the axis of the tube at posi-

tion R{®’ which contains thejth molecule. Then we may

_9 g 1 2
write So_,l—iﬂ b'j; EKp

Z*l

1 . A R R x>, e BIKDSE—E+E{M;, 3
X:VG’Th(E“p)e'K'Rgo)e'””"”f[YIl(p)—Yi<p>]. (36) 2 [E-E+EdMy. (37

where E; is the energy of the J=1) final state, andZ
At low temperature the initial statevhose energy is denoted =3; exd —E;/(kT)], and

27 N ~ . . 2
dep =y (9= 1,3,= u|Y1(p) = Y1 *(p)|I=0J,= 0)e' <"kl Pr=Pi+mdrr ¢ (k, ) * ¢ (k)
0

M=
27yl ci(K)12r Sy ek, w)]?ri M2

2
[ JIp,—p+a(kr)Ce(KD* =Ip —_p —1(kri)Ce(k,—1)* Jrici(k)

= : (38
473y ci(K)%riZy uler(k,m)|?ry

where J,(x) is a Bessel function and;(k) is the value of to those of H trapped in solid gy). Finally we note that
cg‘fg(k) for the initial state andc;(k) is the value of there are many lines in the spectrum due to transition be-
Cgé)pr(k',,u') for the final state. tween different tangential phonon staté®., P quantum

' Wenumbeif. However, their observation could be problematic

due to experimental energy resolutiofwhich would

calculatedS, ., for several temperatures and the results arg " oo 2 high energies than FWHM of 0.5 meV used in
plotted in Fig. 8a). At zero temperature the initial state has Fig. 8) g g9 .

P;=0. So the energy loss is zero up to the cut-off energy
which is the energy of para-to-ortho conversion. For small
temperatures, the cross section does not appear discontinu- B. Ortho Cross Section
ously, but turns on rapidly over a range of energy of order
kT. The first para-to-orthdi.e., J=0 to J=1) transition is
observed at energies about 16.8 and 13.6 meV with approx
mately one-to-two intensity rati¢corresponding to a split-
ting of 3.2 meV betweenJ=1M=0 andJ=1M==*1
states, respectivelyThe center of gravity of thd=1 levels
gives the average para-ortho conversion energy 1 1
=14.67 meV. This result represents only a small amount of Slalz_{b,jo(_'(p)
downward shift of 0.03 meV from the free molecule value of 2 2
14.7 meV.

We note that there are several neutron scattering experi- XE e B/KDSE—E+E{]Mj, (39
ments reporting the para-to-ortho transitiohl.The observed if
splitting is about 1 meV, suggesting the idea that in those
experiments hydrogen molecules were probably not inside
the nanotubes. The calculated para-to-ortho splitting of 3.
meV is slightly larger than the 2.6 meV splitting observed for
H, on graphite? M= | (F|e*Tkeosds] |2 (40)

In addition to the sharp para-to-ortho rotational transi- i '
tions, Fig. §a) also indicates several broad radial phonon
transitions at energies about 15 and 30 nisihilar values Now for M;; we have in the notation of E¢38)

We now discuss the qualitative meaning of this result.

Here we discuss the scattering from an orthg H
molecule. As before, the major problem is the calculation of
the matrix element. In analogy with the previous results we
write

2
Z*l

here we neglect terms involving(3 xp) and
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2m . . 2 2
fo d¢r% el <1keosdrel (PP drr o (k, ) * ¢ (K, ) ‘kE Ip—p, (KTTCH(K, ) * Ci(K, 1)
, 7

M= (41)
2

K, u

72
2 |Ci(kvﬂ)|2rk2 |Cf(k,M)|2r4 2 |Ci(kaM)|2rkE |Cf(k’ﬂ)|2rk
K, K, u K, p

Figure 8b) shows the calculated spectrum ortho cross Finally we note that the tangential phonon transitions be-
sectionS, .4, indicating many transitions between a largelow 10 meV show a maximum near 3.6 to 4 meV. We can
number of states. It is possible to identify the radial phonorunderstand this by considering the condition that the neutron
transitions for only one and two phonon states as indicated iwave form become resonant with the wave function of H
the figure. On the other hand, the transitions between tangemolecule going around the circumference of the minimum of
tial phonon state§i.e., states with different quantum number the Mexican hat. The phase change when the neutron passes
P) dominate the calculated spectrum, giving rise to manythrough a diamater of the Maxican hat i&12, wherer is
sharp peaks. Due to experimental energy resolution, it ishe radius at which the Maxican hat potential is minimal. The
probably not possible to observe the transition at high enerphase change of the,Hnolecule going around half a cir-
gies(say above 20 me)/ However, the resolution at energies cumference ismP. If we assume an initial state witR;

below around 10 meV could be about 0.5 mewhich is  —(  then the resonance condition P =2kr. With
used in Fig. 8 and therefore it may be possible to observe_3 -1 gng ro=3.5A, we find P;~6. Then E;—E;
these transitions. =h2P%((2mry) ~})=0.09P? meV=3.2 meV, in reasonable

agreement with the numerical evaluation.

(a)
splitting of J=1 levels VIl. CONCLUSION

‘ We list the major conclusion from our study of, kihol-
ecules bound to nanotubes which we treat as smooth cylin-
ders.

We have derived the analog of a radial equation for the
Schralinger equation for the translational and rotational mo-
tion of a molecule in cylindrical geometry. This formulation
leads to classifying translation-rotation wave functions ac-
cording to their properties under a global rotation of the mol-
ecule about the cylindrical axis.

Using this radial equation, the translation-rotation wave
60 50 40 30 20 -10 0 func.tions for a hydrogen molecul_e bound eifther inside or

Energy (meV) outside a nanotube can be obtained numerically. We also
have developed simple toy models which quite accurately
(b) ‘ ‘ ‘ ‘ ‘ reproduce the numerical results, but have the advantage that

N=2  N=1 they elucidate the nature of the translation-rotation dynam-
ics.

WWWVAWJ Simple classical symmetry arguments fail to predict the

I correct degeneracies of translation-rotation wave functions.
However, the quantum wave functions are easy to understand

W\,}/WMW\/\/\%W qualitatively. For instance, for d=1 molecule (such as
ortho-H,), one class of translation-rotation wave functions

has the molecule in 3,=0 state(i.e., aligned along the axis

of the nanotubewith no admixture fromJ,= = 1. This sim-

plification is a result of the mirror plane perpendicular to axis

of the cylinder.

‘ ‘ ‘ ‘ ‘ We also suggest that neutron time-of-flight spectra could

60 50 -40  -30 -20  -10 0 provide useful confirmation of our results. To that end we
Energy (meV) have calculated typical spectra that might be observed. These

are shown in Fig. 8.

Intensity (arb.)

Intensity (arb.)

FIG. 8. The calculated neutron cross secfiith arbitrary scal-

ing) for para to orthda) and ortho to orthdb) transitions at several ACKNOWLEDGMENTS
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ation(BSH V'=2\2B0?[|2,m=—2)(2,m=0|

APPENDIX A: INCLUSION OF BOTH ANHARMONICITY +]2,m=0)(2,m=2[] 32 +H.c., (A8)

AND TRANSLATION-ROTATION COUPLING where H.c. indicates the Hermitian conjugate of the preced-

Here we study the simultaneous effect of anharmonicitying term. We find the eigenvalues to be those of Table IV.
and translation rotation coupling for the two-phonon mani-
fold within the toy model. From Table | we see that we may

write the anharmonic Hamiltonia¥ ,, which is indepen- APPENDIX B: CARTESIAN REPRESENTATION

dent ofJ,, as Here we rewrite in the Cartesian representation the eigen-
functions which were given in Table IIl in cylindrical coor-
Vau=V Z+§ 4[22 _ _ dinates.
AHT Vol T 370 |2m=0)(2m=0|
|Jz: O>: |Z>v
—[2m=2)2m=2|—[2m=-2)2m=—2|],
1 .
(AD) 3,=1)= = S,
whereV,=152ys*/3 and|2,m) is a two-phonon wave func-
tion (with energy 3iw) as given in Table I. The translation 1
rotation interaction may be written as 13,=—1)= E|x_iY>_ (B1)
V=a[3J2-2]+V’, (A2)
From Table IIl the eigenfunctions with eneray+ 4023 are
where
1 ! [(X+iY)(x—iy)) F|(X—iY)(x+iy)
, . . s=—(— iY)(x—i —iY)(x+i .
Vv :EB[J?;.(X_|Y)2+J2_(X+|Y)2]- (A3) ‘#, 2\/5( ( ( y)>+ ( ( y >)
(B2)
If we write the ground state wave function as So, apart from a phase factor,
|0>:N00e—(1/4)(x2+y2)/02, (A4) L
then the two phonon eigenstates are ¢+=E|xx+ yY),
1 2,2
[2m=0)= = (X2+Y2=2)Nge VIXFY)  (AB) 1
)= 2 0 ¢,=E|xv—yx>. (B3)
and
From Table Il the eigenfunctions with energyare
1
|2m=+2)= ——(X+iY)ZNgge~ WIE*Y)  (ap) 1
212 b= 5lxiy)(X=iY)) (B4)
whereX=x/o andY=y/o. If (') indicates a ground state . .
average, then we have the evaluation so that we may take the eigenfunctions to be
(0](x—iy)?|2;m=2) 1
P1=—=[XX=yY),
V2
=o° }(x2+Y2—2)(x—iY)Zi(x+iY)Z
2 22 1
Po=—=|xXY+yX). (B5)
=44202, (A7) SN | )
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