Helium atoms or hydrogen molecules are believed to be strongly bound within
the interstitial channels (between three carbon nanotubes) within a bundle of
many nanotubes. The effects on adsorption of a nonuniform distribution of tubes
are evaluated. The energy of a single particle state is the sum of a discrete
transverse energy Et (that depends on the radii of neighboring tubes) and a
quasicontinuous energy Ez of relatively free motion parallel to the axis of the
tubes. At low temperature, the particles occupy the lowest energy states, the
focus of this study. The transverse energy attains a global minimum value
(Et=Emin) for radii near Rmin=9.95 Ang. for H2 and 8.48 Ang.for He-4. The
density of states N(E) near the lowest energy is found to vary linearly above
this threshold value, i.e. N(E) is proportional to (E-Emin). As a result, there
occurs a Bose-Einstein condensation of the molecules into the channel with the
lowest transverse energy. The transition is characterized approximately as that
of a four dimensional gas, neglecting the interactions between the adsorbed
particles. The phenomenon is observable, in principle, from a singular heat
capacity. The existence of this transition depends on the sample having a
relatively broad distribution of radii values that include some near Rmin.Comment: 21 pages, 9 figure